首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Efficient transport of bile acids, a typical characteristic of hepatocytes, is partially lost in most hepatoma cell lines and in normal hepatocytes after some days in culture. We have tested whether the polarized rat hepatoma-human fibroblast hybrid WIF (hybrids between W138 and Fao cells) cells previously obtained by our group were able to perform vectorial transport of the fluorescent bile acid derivative cholylglycylamidofluorescein (CGamF) towards the bile canaliculi (BC). Four different WIF clones were analyzed. All were well polarized, as shown by the formation of spherical and even tubular BC-like structures and by the restricted localization at the BC, visualized by immunofluorescence, of the apical membrane marker HA4, a possible bile acid carrier. WIF-B and its subclone WIF-B9 were found to accumulate CGamF in 65% to 75% of their BC. This transport was time, temperature, and partly sodium dependent and was inhibited by coincubation with the parental natural bile salt cholylglycine. Dinitrophenyl glutathione, a substrate of the canalicular multispecific organic anion transporter, did not inhibit CGamF canalicular secretion, whereas it greatly impaired the canalicular secretion of a non-bile acid organic anion, fluorescein, generated intracellularly from fluorescein diacetate. Confocal microscopy confirmed the presence of CGamF in the cytoplasm, supporting a transcellular route from medium to BC. In contrast, two other polarized clones exhibited a poor ability (WIF 12-6) or no ability (WIF12-1 TGdelta) to vectorially transport CGamE In conclusion, WIF-B and WIF-B9 exhibit not only structural but also functional polarity, at least as far as vectorial organic anion transport is concerned.  相似文献   

3.
Phosphodiesterases (PDEs) are key enzymes involved in the regulation of intracellular cyclic nucleotide metabolism. The aim of the present study was to identify and to characterize the PDE isoenzymes present in the human detrusor smooth muscle. Human detrusor PDE isoenzymes were separated by Q-Sepharose anion exchange and calmodulin-agarose affinity chromatography and characterized upon their kinetic characteristics and their sensitivity to allosteric modulators and inhibitors. All five presently known PDE isoenzyme families were identified: one high-affinity, low-Km calcium/calmodulin-stimulated PDE I with a slight preference for cGMP over cAMP, one cGMP-stimulated PDE II, one cGMP-inhibited PDE III, one cAMP-specific PDE IV and one cGMP-specific PDE IV. All five known PDE isoenzyme families exist in human detrusor smooth musculature. The kinetic characteristics, together with functional in vitro studies, suggest that the PDE I may be of importance in the intracellular regulation of the human detrusor smooth muscle tone.  相似文献   

4.
Involvement of the contact system of coagulation in the pathogenesis of various inflammatory diseases is suggested by reduced plasma levels of factor XII (Hageman factor) and prekallikrein generally considered to result from activation of the contact system. However, in many of these diseases patients develop an acute-phase response and, therefore, an alternative explanation for the decreased levels of factor XII could be the downregulation of factor XII gene expression in the liver as described for negative acute-phase proteins. We report here that interleukin-6 (IL-6), the principal cytokine mediating the synthesis of most acute-phase proteins in the liver, downregulates the production of factor XII by the human hepatoma cell line HepG2 by up to 75%. The decrease in protein secretion correlated with an equivalent decrease of factor XII mRNA likely indicating a pretranslational control of factor XII gene expression by IL-6. Downregulation of factor XII production by IL-6 in vitro parallelled that of transthyretin, a known negative acute-phase protein. Moreover, we show that, in patients developing an acute-phase response after immunotherapy with IL-2, plasma levels of factor XII correlate (r = .76, P < .0001) with those of transthyretin. Taken together, these results suggest that factor XII behaves as a negative acute-phase protein.  相似文献   

5.
6.
7.
Liposome uptake by HepG2 human hepatoma cells was investigated in comparison with the uptake by J774 murine macrophage-like cells. HepG2 cells accumulated liposomes (egg yolk phosphatidylcholine (EPC)/Chol; 75/25, diameter 0.2 micron) at 37 degrees C comparably to J774 macrophage-like cells. Confocal microscopic observations revealed that J774 cells internalized EPC/Chol liposomes efficiently but HepG2 cells kept most of the liposomes bound on their plasma membrane surfaces. Poly(ethylene glycol) (PEG)-coated liposomes (0.2 micron) containing poly(ethylene glycol) cholesteryl ether (PEG-Chol) avoided cellular uptake at 37 degrees C by either cell line. In both cell lines, binding of PEG-coated liposomes was lower than that of EPC/Chol liposomes when incubation was carried out at 4 degrees C. To analyze the binding process at 37 degrees C, surface-bound liposomes were removed from the cells by pronase treatment. A reduction of the amount of bound-liposomes on cell surfaces was observed in the case of PEG-coated liposomes. Therefore, PEG-coating reduces direct binding of liposomes to the cell surfaces. The presence of apolipoprotein E (apoE) increased the uptake to EPC/Chol liposomes via its receptor in both cell lines. In contrast, cellular uptake of PEG-coated liposomes was not enhanced by treatment with apoE. Therefore, while apoE-mediated liposome uptake occurs in the case of EPC/Chol liposomes, it does not occur for PEG-coated liposomes; PEG-coating also inhibits protein-mediated binding to the cells. These results further imply that elusion from liver clearance of PEG-coated liposomes is not only due to the reduction of uptake by Kupffer cells but also by hepatocytes when liposomes are small enough to go through the fenestrates of the endothelial lining.  相似文献   

8.
The function of acidification along the endocytic pathway is not well understood, in part because the perturbants used to modify compartmental pH have global effects and in some cases alter cytoplasmic pH. We have used a new approach to study the effect of pH perturbation on postendocytic traffic in polarized Madin-Darby canine kidney (MDCK) cells. Influenza M2 is a small membrane protein that functions as an acid-activated ion channel and can elevate the pH of the trans-Golgi network and endosomes. We used recombinant adenoviruses to express the M2 protein of influenza virus in polarized MDCK cells stably transfected with the polymeric immunoglobulin (Ig) receptor. Using indirect immunofluorescence and immunoelectron microscopy, M2 was found to be concentrated at the apical plasma membrane and in subapical vesicles; intracellular M2 colocalized partly with internalized IgA in apical recycling endosomes as well as with the trans-Golgi network marker TGN-38. Expression of M2 slowed the rate of IgA transcytosis across polarized MDCK monolayers. The delay in transport occurred after IgA reached the apical recycling endosome, consistent with the localization of intracellular M2. Apical recycling of IgA was also slowed in the presence of M2, whereas basolateral recycling of transferrin and degradation of IgA were unaffected. By contrast, ammonium chloride affected both apical IgA and basolateral transferrin release. Together, our data suggest that M2 expression selectively perturbs acidification in compartments involved in apical delivery without disrupting other postendocytic transport steps.  相似文献   

9.
Dengue (DEN) and yellow fever (YF) viruses are responsible for human diseases with symptoms ranging from mild fever to hepatitis and/or hemorrhages. Whereas DEN virus typically induces only limited foci of necrosis in the liver, YF virus infection is characterized by devastating lesions. In a human hepatoma cell line (HepG2), the kinetics of DEN and YF virus replication and release from the cells and the nature of host cell response to viral infection were compared. DEN virus infection was characterized by the early appearance of intracellular viral antigens, major ultrastructural cytopathic changes as early as 32 h after infection, extensive apoptotic cell death, and a low production of infectious particles. In contrast, YF virus grew exponentially to high titers and induced cytopathic changes only 72 h after infection. Differences between the infection processes of the two viruses observed in the hepatoma cell line may explain the different liver pathologies.  相似文献   

10.
11.
There is evidence that the inadequate erythropoietin (Epo) production observed in patients undergoing allogeneic bone marrow transplantation (BMT) might be ascribed to an inhibitory effect caused by the immunosuppressive drug cyclosporin A (CsA). In this in vitro study, we have evaluated the effects of CsA on the release of Epo in the culture medium by the human Hep3B hepatoma cell line. In cultures incubated with both CsA and the nonimmunosuppressive CsA analog MeAla-6, but not with the CsA-unrelated immunosuppressive agent FK-506, the levels of Epo in the medium were significantly reduced in comparison with controls, at concentrations (0.01 to 1.6 mumol/L) not affecting total protein synthetic rate nor the constitutive secretion of alpha-fetoprotein. Hep3B cells were found to contain a CsA-binding molecule, with an M(r) of 18 Kd, as assessed by high performance liquid chromatography (HPLC) and ligand-blotting analysis. CsA did not affect the expression of the Epo gene, as judged by Northern blot analysis, but caused a significant amount of Epo to remain unsecreted within the cells; almost all (97% of total) of the intracellular Epo was associated with the plasma membrane subcellular fraction. We conclude that: (1) CsA is able to inhibit Epo release in vitro by Hep3B cells, further supporting the hypothesis that the drug might have a role in the inappropriately low Epo levels observed in BMT patients; (2) the inhibitory effect appears to be specific and not caused by a general impairment of protein synthesis and/or secretion; and (3) the reduced Epo levels found in the medium of CsA-treated Hep3B cultures are supposed to be the consequence of an inability of the cells to correctly process Epo molecules for the secretory pathway.  相似文献   

12.
13.
DSD-1-PG is a chondroitin sulfate proteoglycan with neurite-outgrowth promoting properties expressed during development and upon lesion of neural tissues which has been defined with the specific monoclonal antibody 473HD. Double immunofluorescence studies performed on primary cerebellar cultures document that the proteoglycan is expressed on the surface of immature glial cells and the neural cell line Oli-neu, a model of mouse oligodendrocyte progenitors. Biochemical and immunoprecipitation studies performed with biosynthetically labelled Oli-neu and primary neural cells demonstrated that DSD-1-PG is expressed in vitro as a proteoglycan of 1000 kD apparent Mr with two core glycoproteins of 250 kD and 400 kD. In order to study the regulation of DSD-1-PG expression, an in vitro enzyme-linked immunosorbent assay based on Oli-neu and mAb 473HD was established. TGF-beta1-3 induced up-regulation of the proteoglycan, while various growth factors and cytokines did not significantly affect DSD-1-PG expression in both the supernatant and the extract of the culture monolayer. FACSCAN analysis suggested that the proteoglycan is upregulated on the surface of Oli-neu. Cell substrate adhesion assays revealed that this enhanced expression correlates with a selective reduction of adhesion to laminin, but not fibronectin or merosin, which could specifically be neutralized by antibodies to DSD-1-PG. We conclude that the proteoglycan contributes to the regulation of glial precursor interactions with the extracellular matrix.  相似文献   

14.
The initial release of Ca2+ from the intracellular Ca2+ stores is followed by a second phase during which the agonist-dependent Ca2+ response becomes sensitive to the extracellular Ca2+, indicating the involvement of the plasma membrane (PM) Ca2+ transport systems. The time course of activation of these transport systems, which consist of both Ca2+ extrusion and Ca2+ entry pathways, is not well established. To investigate the participation of these processes during the agonist-evoked Ca2+ response, isolated pancreatic acinar cells were exposed to maximal concentrations of an inositol 1,4,5-trisphosphate-mobilizing agonist (acetylcholine, 10 microM) in different experimental conditions. Following the increase of [Ca2+]i, there was an almost immediate activation of the PM Ca2+ extrusion system, and maximal activity was reached within less than 2s. The rate of Ca2+ extrusion was dependent on the level of [Ca2+]i, with a steep activation at values just above the resting [Ca2+]i and reached a plateau value at 700 nM Ca2+. In contrast, the PM Ca2+ entry pathway was activated with a much slower time course. There was also a delay of 3-4 s between the maximal effective depletion of the intracellular Ca2+ stores and the activation of this entry pathway. By use of digital imaging data, the PM Ca2+ transport systems were also analyzed independently in two regions of the cells, the lumenal and the basal poles. With respect to the activation of the Ca2+ entry pathways, no significant difference existed between these two regions. In contrast, the PM Ca2+ pump displayed a different pattern of activity in these regions. In the basal pole, the pump activity was more sensitive to changes of [Ca2+]i and had a higher maximal activity. Also, in the lumenal pole, the pump became saturated at values of [Ca2+]i around 700 nM, whereas at the basal pole [Ca2+]i had a biphasic effect on the pump activity, and higher [Ca2+]i inhibited the pump. It is argued that these differences in sensitivity to the levels of [Ca2+]i and the different relationship between [Ca2+]i and the rate of extrusion at the two functional poles of the pancreatic acinar cells indicate that the plasma membrane Ca2+ ATPase might play an important role in the polarization of the Ca2+ response.  相似文献   

15.
The multidrug resistance protein 5 (MRP5/ABCC5) has been recently identified as cellular export pump for cyclic nucleotides with 3',5'-cyclic GMP (cGMP) as a high-affinity substrate. In view of the important role of cGMP for cardiovascular function, expression of this transport protein in human heart is of relevance. We analyzed the expression and localization of MRP5 in human heart [21 auricular (AS) and 15 left ventricular samples (LV) including 5 samples of dilated and ischemic cardiomyopathy]. Quantitative real-time polymerase chain reaction normalized to beta-actin revealed expression of the MRP5 gene in all samples (LV, 38.5 +/- 12.9; AS, 12.7 +/- 5.6; P < 0.001). An MRP5-specific polyclonal antibody detected a glycoprotein of approximately 190 kd in crude cell membrane fractions from these samples. Immunohistochemistry with the affinity-purified antibody revealed localization of MRP5 in cardiomyocytes as well as in cardiovascular endothelial and smooth muscle cells. Furthermore, we could detect MRP5 and ATP-dependent transport of [(3)H]cGMP in sarcolemma vesicles of human heart. Quantitative analysis of the immunoblots indicated an interindividual variability with a higher expression of MRP5 in the ischemic (104 +/- 38% of recombinant MRP5 standard) compared to normal ventricular samples (53 +/- 36%, P < 0.05). In addition, we screened genomic DNA from our samples for 20 single-nucleotide polymorphisms in the MRP5 gene. These results indicate that MRP5 is localized in cardiac and cardiovascular myocytes as well as endothelial cells with increased expression in ischemic cardiomyopathy. Therefore, MRP5-mediated cellular export may represent a novel, disease-dependent pathway for cGMP removal from cardiac cells.  相似文献   

16.
Calcitonin (CT), which regulates serum calcium through its actions in bone and the kidney tubule, also has a potent natriuretic effect in vivo. Na reabsorption in the proximal kidney tubule is mostly dependent on the activity of the Na,K-ATPase and the apical Na/H exchanger. We have previously shown that CT regulates the activity of the Na,K-ATPase in the proximal kidney tubule cell line LLC-PK1 in a cell cycle-dependent manner. We report here that, in the same cells, CT also regulates the Na/H exchanger through a cell cycle-specific activation of the Ca/calmodulin-dependent protein kinase II. In G2 phase, no changes in ethylisopropyl amiloride-sensitive 22Na uptake is observed, despite an increase in cAMP. In contrast, the hormone inhibits the apical exchanger when the cells are in S phase, resulting in an 80% inhibition of 22Na uptake. These results demonstrate that CT affects the activity of the two major proximal tubule Na transport systems and may help clarify the mechanisms by which CT regulates Na+ reabsorption.  相似文献   

17.
It has been reported that conjugating acyclovir, a potent antiviral with low oral bioavailability, to L-valine increases its urinary excretion in rats. However, it was also reported that this increase is not found for the D-valine ester, suggesting that a carrier-mediated mechanism is involved in its intestinal absorption. Therefore, mechanisms involved in the transepithelial transport of L-valine-acyclovir were investigated using the intestinal cell line, Caco-2, as a model system for the intestinal epithelium. Only the mucosal-to-serosal transport of acyclovir was increased by conjugation with L-valine (approximately 7-fold), suggesting the involvement of a carrier-mediated mechanism. This conclusion was supported by the finding that this increase was saturable. The mucosal-to-serosal transport of L-valine-acyclovir could be inhibited by L-glycylsarcosine, but not by L-valine, suggesting the involvement of the dipeptide carrier. Also it was found that L-valine-acyclovir inhibits the uptake of cephalexin, a substrate for the oligopeptide transporter. Stability of the esters in either the mucosal or serosal bathing solution is more than 90% after completion of the transport study. However, after transport, the receiver solution contained approximately 90% of acyclovir. Based on these findings it was concluded that absorption of the L-valine ester of acyclovir occurs as a result of uptake by the oligopeptide transporter at the apical cell membrane followed by intracellular hydrolysis of the ester and efflux of acyclovir.  相似文献   

18.
In poorly differentiated hepatoma cells, a glycoprotein carrying lactosaminoglycans is identified, and the structure of its glycan moiety is proposed. After membrane solubilization, protein fractionation by gel filtration, and electroelution, this glycoprotein (GPIII) was identified by its affinity for Datura stramonium lectin and its content in large glycopeptides. As shown by PAGE, GPIII has an apparent molecular mass of 100 kDa and is highly glycosylated (36%). It appears as an integral membrane glycoprotein. It is absent from normal hepatocytes, in that no heavy glycopeptides could be detected that bound to Datura lectin or to specific antiserum. The glycan moiety of GPIII has been analyzed according to carbohydrate composition, glycosidase treatment, affinity chromatography on immobilized pokeweed, Datura and Griffonia lectins, and by NMR and methylation analyses. The glycan is a N-linked tetraantennary lactosaminoglycan of 6.6 kDa, containing Gal, GlcNAc, Man, and NeuNAc in a 16:14:3:4 molar ratio, with an average of three repeating units/branch. Its beta-Gal residues are in the penultimate position and are linked in beta1-4 at least in four structural elements (three peripheral and one internal). It contains a very branched structure with Gal alpha1-3Gal beta1-4GlcNAc side chains linked in the C6 position to an inner Gal residue in a main branch. Alpha-Gal and NeuNAc residues [mainly NeuNAc alpha(2-3) linkage] are expressed as the nonreducing terminal groups. A possible structural model is proposed for this heterogeneous lactosaminoglycan, although no definitive structure can be established. That this lactosaminoglycan-carrying glycoprotein GPIII is not expressed in hepatocytes suggests its expression to be linked to the undifferentiated and/or malignant state of this hepatoma.  相似文献   

19.
In polarized HepG2 hepatoma cells, sphingolipids are transported to the apical, bile canalicular membrane by two different transport routes, as revealed with fluorescently tagged sphingolipid analogs. One route involves direct, transcytosis-independent transport of Golgi-derived glucosylceramide and sphingomyelin, whereas the other involves basolateral to apical transcytosis of both sphingolipids. We show that these distinct routes display a different sensitivity toward nocodazole and cytochalasin D, implying a specific transport dependence on either microtubules or actin filaments, respectively. Thus, nocodazole strongly inhibited the direct route, whereas sphingolipid transport by transcytosis was hardly affected. Moreover, nocodazole blocked "hyperpolarization," i.e., the enlargement of the apical membrane surface, which is induced by treating cells with dibutyryl-cAMP. By contrast, the transcytotic route but not the direct route was inhibited by cytochalasin D. The actin-dependent step during transcytotic lipid transport probably occurs at an early endocytic event at the basolateral plasma membrane, because total lipid uptake and fluid phase endocytosis of horseradish peroxidase from this membrane were inhibited by cytochalasin D as well. In summary, the results show that the two sphingolipid transport pathways to the apical membrane must have a different requirement for cytoskeletal elements.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号