首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The theory of guided waves in metal-dielectric planar multilayer structures is applied to reduce the loss and maximize optical nonlinearity for efficient terahertz-field generation in a surface electromagnetic wave by femtosecond laser pulses confined in a (chi)((2)) nonlinear planar waveguide. For typical parameters of thin-film polymer waveguides and metal-dielectric interfaces, the optimal size of the (chi)((2)) waveguide core providing the maximum efficiency of terahertz plasmon-field generation is shown to be less than the wavelength of the optical pump field.  相似文献   

2.
We report on new schemes for terahertz (THz) generation. The THz efficiency of photoconducting antennas can be increased by using a cavity effect for the near-infrared pump beam. The cavity is formed by a molecular beam epitaxy grown semiconductor Bragg mirror below the photoconducting layer. The optical confinement is accompanied by an electrical confinement suppressing undesired leakage currents and providing a constant electric field in the active layers. The performance of this cavity-enhanced emitter is further improved by using a mobility optimized low-temperature GaAs layer. This emitter is successfully used in a femtosecond Ti:sapphire laser cavity for highly efficient intracavity THz generation, where the photoconductive layer serves also as a saturable absorber. The broadband THz pulses generated are used for time-resolved spectroscopy of nanostructures. We study the dynamics of intersubband transitions in semiconductor quantum wells. The relaxation of carriers excited by a near-infrared pump pulse is investigated by measuring the THz absorption between the different subbands with our THz pulses. For transition energies below the optical phonon energy we find relatively long relaxation times with a strong dependence on the excited carrier density.  相似文献   

3.
Luo Q  Yu J  Hosseini SA  Liu W  Ferland B  Roy G  Chin SL 《Applied optics》2005,44(3):391-397
High-energy femtosecond laser pulses propagating in the atmosphere undergo self-focusing resulting in the appearance of the phenomenon of filamentation. We observed an extra-attenuation of such (terawatt) femtosecond laser pulses propagating in the atmosphere when compared with long pulses (200 ps) with the same energy. This is because, in contrast to the linear propagation of the long pulse, the input femtosecond laser pulse is attenuated owing to either absorption through multiphoton ionization/tunnel ionization or to scattering on the laser-induced plasma; self-phase-modulation and self-steepening further convert partially the energy initially contained in the fundamental bandwidth into the broad side bands of the laser, becoming eventually a white-light laser pulse (supercontinuum). The experimental data allow us to extract an effective extra-attenuation coefficient for an exponential decay of the input pulse energy with the propagation distance. Such a coefficient allows us to estimate an upper bound of the filament length under the experimental conditions used. More generally, our observation leads to a new technique to remotely detect light filaments in the atmosphere.  相似文献   

4.
Femtosecond optical parametric amplification that results in microjoule mid-infrared pulses at wavelengths exceeding 3 mum is demonstrated. Narrow-band quasi-cw seeding at the signal wavelength is applied to ensure the generation of nearly transform-limited femtosecond pulses at the idler wavelength. The broad bandwidth of the parametric amplification provided by pumping with femtosecond pulses from a Ti:sapphire regenerative amplifier at high intensity results in idler pulse durations shorter than the pump pulse length. The potentials of three nonlinear optical crystals that belong to the potassium titanyl phosphate family are comparatively studied. At 1-kHz repetition rate our all-solid-state system produces highly synchronized ~100-fs pulses in the spectral range between 3 and 4 mum.  相似文献   

5.
In this paper, we report a long cavity passively mode-locked fibre laser. The proposed mode locker is a reflective long cavity non-linear optical loop mirror (NOLM) which consists of a 50:50 coupler and 2-km single-mode fibres. The laser achieves stable mode locking at a fundamental repetition rate of 100 kHz. The rectangular pulses operating in dissipative soliton resonance region is generated in the laser. The relationship between the pulse duration and the pump power is investigated in detail. When the pump power is 200 mW, the laser generates rectangular pulses at 1565.57 nm (central wavelength) with pulse duration of 81.5 ns. The single pulse energy as high as 33.34 nJ is obtained. The results show that the reflective NOLM is an efficient mode locker and useful for the generation of high energy pulse.  相似文献   

6.
Circular arrays of plasma filaments induced by femtosecond laser pulses in atmospheric air are shown to support guided modes of electromagnetic radiation in the centimeter and millimeter wavelength range. With the refractive index of laser-induced filaments being lower than the refractive index of nonionized air, arrays of such filaments can serve as a structured waveguide cladding, providing an index guiding of radar signals in a nonionized gas region. In spite of attenuation of radar radiation induced by plasma absorption, filament-array waveguides are shown to enhance radar signal transmission relative to freely propagating radar beams.  相似文献   

7.
Petrov V  Rotermund F  Noack F 《Applied optics》1998,37(36):8504-8511
A mid-infrared femtosecond optical parametric amplifier tunable in the chemically important spectral region between 3.1 and 3.9 mum (at >10-muJ idler pulse energy) has been constructed on the basis of MgO:LiNbO(3) with 7% doping. With femtosecond pumping near 800 nm (Ti:sapphire regenerative amplifier) and narrow-band (long-pulse) seeding, this simple single-stage device provides maximum conversion efficiencies of 40% and exhibits extremely low seed threshold (<10-mW peak seed power for >1-muJ idler output). The generated idler pulses are almost transform limited with <200-fs pulse duration. The pulse-to-pulse fluctuations reproduce the stability of the pump source at 1-kHz repetition rate.  相似文献   

8.
E Boulais  R Lachaine  M Meunier 《Nano letters》2012,12(9):4763-4769
The generation of nanobubbles around plasmonic nanostructures is an efficient approach for imaging and therapy, especially in the field of cancer research. We show a novel method using infrared femtosecond laser that generates ≈800 nm bubbles around off-resonance gold nanospheres using 200 mJ/cm(2) 45 fs pulses. We present experimental and theoretical work that demonstrate that the nanobubble formation results from the generation of a nanoscale plasma around the particle due to the enhanced near-field rather than from the heating of the particle. Energy absorbed in the nanoplasma is indeed more than 11 times the energy absorbed in the particle. When compared to the usual approach that uses nanosecond laser to induce the extreme heating of in-resonance nanoparticles to initiate bubble formation, our off-resonance femtosecond technique is shown to bring many advantages, including avoiding the particles fragmentation, working in the optical window of biological material and using the deposited energy more efficiently.  相似文献   

9.
Third-harmonic generation (THG) in air in tight-focusing conditions is presented. Variation of the pulse duration supplied optimal conditions for THG by femtosecond pulses that varied in the range 110-1300 fs. We show that this third-harmonic generation was caused by Kerr-induced phase variations of fundamental and harmonic beams. Various characteristics (laser intensity, focusing conditions, pulse duration, air pressure, etc.) of THG in air were analyzed to optimize this process. The THG conversion efficiency of 795 nm, 300 fs radiation was 1 x 10(-3). The harmonic radiation did not show considerable disruption of its spectral and spatial distribution in tight focusing conditions for intensities as high as 5 x 10(14) W cm(-2).  相似文献   

10.
Suzuki T  Minemoto S  Sakai H 《Applied optics》2004,43(32):6047-6050
Adaptive shaping of time-dependent polarization pulses is performed by reference to the analyzed results of dual-channel spectral interferometry. The desired pulses can be generated only by use of such a polarization-characterization technique. We demonstrate the generation of shaped femtosecond pulses whose ellipticity increases at a constant rate. The relative error between the shaped pulse and the target pulse is less than 6% over the main part of the pulse. Shaped time-dependent polarization pulses have many potential applications.  相似文献   

11.
The authors report the fabrication and characterization of active waveguides in GeO2–PbO–Ga2O3 glass samples doped with Er3+, written with a femtosecond laser delivering pulses of 150 fs duration at 1 kHz repetition rate. Permanent refractive index change was obtained and waveguides were formed under different laser pulse energies and scan velocities. The passive and active optical properties of the waveguides were investigated. The minimum value of propagation loss was of 4.8 dB/cm. Optical amplification at 1.5 μm under 980 nm excitation was observed showing a maximal internal gain of 2.7 dB/cm.  相似文献   

12.
Ling Y  Lu F 《Applied optics》2006,45(36):9087-9091
We introduce a new method for femtosecond pulse shape measurement. The interference of two pulses is employed rather than the second-harmonic generation (SHG). Usually, the measurements of the femtosecond pulse is realized by an interferometer in combination with a nonlinear optical material, while the measurement that we describe is realized by means of a Michelson interferometer with a Schottky junction. Only a metal-semiconductor junction (Schottky junction) is needed, and neither the nonlinear optical material nor a photodetector is included. The two-photon absorption arises when the light is strong enough, while there is only a one-photon absorption when the light is weak. And the calculations are in good agreement with the experimental results. In principle, the new technique could be used for the measuring of pulses with any duration and with very low power. Unlike the SHG scheme, in the new method the quality of optics, mechanics, and other elements of the scheme are not essential, and the measurement is easily realized, but the results are quite precise and very sensitive to the light.  相似文献   

13.
The possibility of obtaining attosecond pulse trains during second harmonic generation by high-intensity femtosecond pulses is demonstrated by means of computer simulation. The attosecond pulses are formed at the basic frequency with a low efficiency (≤8%) of the energy conversion from first to second harmonic. The regimes of attosecond pulse generation at the double frequency are considered.  相似文献   

14.
An efficient scheme for the optimization of ultrashort femtosecond pulse shapes interacting with an atom to control high harmonics spectrum and double attosecond pulse generation is presented. The time-dependent Schrödinger equation of one-dimensional hydrogen atom is solved numerically to obtain electric field emission. The genetic algorithm optimization method is used to control the phase and amplitude of ultrashort excitation laser pulses to generate the desired attosecond-shaped pulses. An appropriate cost function is introduced for genetic algorithm optimization of double attosecond pulse generation. It is shown that the relative intensity of two generated pulses, their delay time and duration can be controlled in this approach. Finally, the parameters of the optimized emitted attosecond pulse are compared with those of desired pulses, and the underlying physical mechanisms are discussed in detail.  相似文献   

15.
High-repetition-rate (80-MHz) femtosecond infrared pulses are generated by difference frequency mixing (DFM) a femtosecond Ti:sapphire laser with a phase-locked synchronized cw mode-locked Nd:YAG picosecond laser. This DFM scheme is of particular interest for generating ultrashort near-IR pulses (~10 fs) because group velocity mismatch with a pump pulse can be ignored. The simplicity and the broad wavelength tunability (from the near IR to the mid-IR) of this scheme is demonstrated. Short (125-fs FWHM) optical pulses in the near IR around 1.5 mum are obtained with noncritical type-I phase-matched LiB(3) O(5). We also used a similar scheme to generate mid-infrared pulses at 3.0 mum with type-II phase-matched KTiOPO(4).  相似文献   

16.
Silva JL  Crespo HM  Weigand R 《Applied optics》2011,50(14):1968-1973
The generation of ultrashort vacuum UV (VUV) pulses by nondegenerate cascaded four-wave mixing of femtosecond pulses in a thin slide of a large band-gap transparent solid is numerically demonstrated. Using a novel noncollinear multiple-beam configuration, cascaded four-wave mixing of amplified 30 fs Ti:sapphire laser pulses at 800 nm, and their second harmonic in lithium fluoride results in the generation of VUV radiation down to 134 nm with energies in the μJ range and durations comparable to those of the pump pulses. The proposed geometry is advantageous in large dispersion scenarios, namely for generating radiation close to absorption bands. Hence these results set this technique as a promising way to efficiently generate ultrashort VUV radiation in solids for several applications in science and technology.  相似文献   

17.
Abstract

We develop a theoretical approach and perform simulations of coherent anti-Stokes Raman scattering (CARS) with ultrashort laser pulses. The signal is generated by biomolecules having subpicosecond dephasing times, from femtosecond pulses on exact resonance with the molecular transitions. All propagation effects are explicitly accounted for, including pump depletion, Raman amplification, parametric generation and pulse reshaping. Our model predicts that a measurable CARS signal can be generated by the dipicolinic acid biomolecule under realistic conditions.  相似文献   

18.
We have used aperiodically poled lithium niobate waveguides to perform intensity autocorrelation and frequency-resolved optical gating (FROG) measurements for ultraweak femtosecond pulses at 1.5 microm wavelength. The required pulse energies for intensity autocorrelation and FROG are as low as 52 aJ and 124 aJ, respectively. The corresponding sensitivities are 3.2 x 10(-7) mW(2) and 2.7 x 10(-6) mW(2), about 3-5 orders of magnitude better than the previous records. The high nonlinear conversion efficiency is attributed to the long waveguide structure, and the needed broad phase-matching bandwidth is realized by chirping the poling period. We discuss the theory of intensity autocorrelation and FROG measurements in the presence of different phase-matching bandwidths, and we show, for the first time to our knowledge, that the distorted intensity autocorrelation trace due to a delta-like phase-matching spectrum is described by a modified field autocorrelation function. We also report new experimental results comparing autocorrelation traces measured with chirped and unchirped waveguide samples and demonstrating high-quality FROG measurements for cubic phase waveforms generated in a programmable pulse shaper.  相似文献   

19.
Proton acceleration from the interaction of ultra-short laser pulses with thin foil targets at intensities greater than 10(18) W cm(-2) is discussed. An overview of the physical processes giving rise to the generation of protons with multi-MeV energies, in well defined beams with excellent spatial quality, is presented. Specifically, the discussion centres on the influence of laser pulse contrast on the spatial and energy distributions of accelerated proton beams. Results from an ongoing experimental investigation of proton acceleration using the 10 Hz multi-terawatt Ti:sapphire laser (35f s, 35 TW) at the Lund Laser Centre are discussed. It is demonstrated that a window of amplified spontaneous emission (ASE) conditions exist, for which the direction of proton emission is sensitive to the ASE-pedestal preceding the peak of the laser pulse, and that by significantly improving the temporal contrast, using plasma mirrors, efficient proton acceleration is observed from target foils with thickness less than 50 nm.  相似文献   

20.
The saturable optical absorption properties of PbSe core nanocrystals (NCs), and their corresponding PbSe/PbScore/shell and PbSe/PbSexS(1-x) core/alloyed-shell NCs, were examined at lambda = 1.54 microm. Saturation intensities of approximately 100 MW/cm2 were obtained. The NCs act as passive Q switches in near-infrared pulsed lasers. Q-switched output pulse energies up to 3 mJ, with a pulse duration of 40-55 ns were demonstrated. Analysis of the optical transmission versus pulse light intensity was carried out according to a model that includes ground-state as well as excited-state absorption. For pulses approximately 10 ns long, the NCs act as fast saturable absorbers. The theoretical fits yield a ground-state absorption cross section of 10-16-10-15 cm2, an excited-state absorption cross section of sigma(es) is congruent to 10(-16) cm2, and an effective lifetime of tau(eff) is congruent to 5 x 10(-12) s.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号