首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Knowledge of lateral mixing is essential to understand heat and momentum transfer parameters in both single-phase liquid and two-phase gas-liquid co-current down flow through packed bed columns. The reactors through which gas and liquid concurrently flow downwards through a bed of catalytic packing are called trickle bed reactors. Experimental data on lateral mixing coefficients from both the heat transfer and radial liquid distribution studies are obtained over a wide range of flow rates of gas and liquid using glass spheres (4.05 and 6.75 mm), ceramic spheres (2.59 mm), and ceramic raschig rings (4 and 6.75 mm) as packing materials covering trickle flow, pulse flow, and dispersed bubble flow regimes. In the present work, an expression for estimation of lateral mixing coefficient (αβ)L is derived using the data on radial liquid distribution studies. The agreement between the values of (αβ)L obtained from heat transfer studies and from radial liquid distribution studies using the experimental data shows that there exists an analogy between the heat transfer and radial liquid distribution in packed beds. Since (αβ)L is an important variable for estimation of various heat and mass transfer parameters, a correlation for (αβ)L based on present heat transfer study is proposed. The agreement between the (αβ)L values estimated from the proposed correlation and experimental values is satisfactory with a standard deviation (s.d.) of 0.119.  相似文献   

2.
This work analyzes the influence of liquid flow modulation on the behavior of a reaction occurring in a spherical porous particle within a trickle bed reactor. A single first-order reaction between a gaseous reactant and a non-volatile liquid reactant is considered. Non-steady-state mass balances for gas and liquid reactants are formulated and solved under isothermal conditions in order to focus the analysis on the mass transport effects. Dynamic reactant profiles inside the catalytic particle are obtained for different cycling and system conditions. The enhancement factor (ε) due to periodic operation is defined to evaluate the impact of induced liquid flow modulation on reaction rate. Influence of cycling and system parameters on the enhancement factor is also reported for a wide range of conditions. Experimental trends observed by several authors can be explained with this approach.  相似文献   

3.
A large experimental database has been established at IFP on the same experimental setup to measure simultaneously pressure drop and liquid holdup in packed bed reactor operated in trickle for a large range of operating conditions. The varying parameters are liquid viscosity and density, gas density, bed particle shape and size. The range for gas density range is particularly large (from 1.3 to ), thanks to the use of dense gas to simulate very high pressure conditions. This data bank has been first used to compare the prediction accuracy of the different models from the literature. Finally, the mechanistic model proposed by Attou et al. [1999. Modelling of the hydrodynamics of the cocurrent gas-liquid trickle flow through a trickle-bed reactor. Chemical Engineering Science 54, 785-802] has been improved by adding a new formulation for liquid film tortuosity in two-phase flow conditions. This model has been validated over the whole data range and the accuracy has been checked with data external to the data bank. The prediction accuracy is significantly increased when compared with the best available models for pressure drop and liquid retention in trickle flow reactors.  相似文献   

4.
The wetting efficiency of liquid trickle flow over a fixed bed reactor has been measured for a wide range of parameters including operating conditions, bed structure and physico-chemistry of liquid/solid phases. This data bank has been used to develop a new correlation for averaged wetting efficiency based on five different non-dimensional numbers. Finally liquid/solid mass transfer has been determined in partial wetting conditions to analyse what are the respective effects of wetting and liquid/gas flow turbulence. These effects appear to be separated: wetting being acting on liquid/solid interfacial area while the liquid/solid mass transfer coefficient is mainly connected to flow turbulence through the interstitial liquid velocity. A correlation has been proposed for liquid/solid mass transfer coefficient at very low liquid flow rate.  相似文献   

5.
The monolith bed is one of the promising catalytic reactors for a number of chemical gas-liquid-solid processes. In the present work, liquid saturations for five different monoliths have been investigated experimentally in a cold-flow unit with a reactor diameter of 5.0 cm. The influences of gas and liquid flow rates and of the direction of two-phase flow on liquid saturation were examined. The results indicate that the direction of flow has no significant influence on liquid saturation for proper gas-liquid distribution. The experimental results are in good agreement with predictions of the drift flux model using the distribution parameter proposed by Ishii (ANL Report ANL-77-47, 1977) along with the assumption of zero drift velocity.In preliminary experiments, gamma-ray computed tomography (CT) has been successfully applied to measure time-averaged liquid distribution over the monolith cross-section in a selected condition. The employment of a nozzle-type distributor provides an almost uniform liquid distribution over the monolith substrate. It is demonstrated that CT is a viable technique for studying two-phase flow in laboratory-scale monolith reactors.  相似文献   

6.
A cellular automata model for liquid distribution studies in trickle bed reactors is presented. It is a potential tool for describing non-uniform distribution of gas and liquid in a trickle bed. This non-uniformity may arise from a wide range of potential sources, such as improper distribution of the feed, random or radial porosity variation, wall effect, partial wetting of the catalyst, and gas-liquid surface tension related effects. Axial and radial dispersion of the liquid flow are inherently included in the model, since the fundamental model probability parameters are directly related to the dispersion coefficients. The present model is extremely fast due to simple single-event modeling, and it is well suited for parallelization. Three examples of the model performance are shown. In the first a liquid jet spreading from a point source is followed, and in the second, effect of radial porosity profile to wall flow is examined. The third example illustrates the potential of the model to predict pulsing flow regime.  相似文献   

7.
Magnetic Resonance Imaging technique was used to investigate the fluid dynamics of multiphase flow in two different applications: (a) stationary two-phase flow in trickle beds, and (b) time-dependent droplet separation in granular bed filters. The experiments were carried out with different gas/liquid systems at either atmospheric conditions or at elevated pressure and temperature. Two-dimensional and three-dimensional image data were then evaluated to quantify the porosity profiles and gas/liquid distribution in packed beds. The results compare well with data from integral measurements.  相似文献   

8.
Computed tomography (CT) is a powerful technique that can be used to image multi-phase flow in three dimensions. In this study, X-ray CT is used to image trickle flow in a stationary packed bed with a spatial resolution of . Errors introduced during the radiograph acquisition and tomographic reconstruction of the volume image make it difficult to identify the three phases (gas, liquid and solid) and in particular the interfacial areas. A novel post-processing strategy based on the matrix convolution operation and a priori knowledge of the shape of the particles is developed that makes it possible to accurately identify the phase interfaces in an unbiased way. The result is a ternary three-dimensional image where each voxel is one of gas, liquid or solid. From this, the gas-liquid, gas-solid and liquid-solid interfacial areas can be calculated. The proposed procedure yields images that are superior to those obtained from the usually employed thresholding operation.  相似文献   

9.
Based on an extensive experimental database (946 measurements) set up from the literature published over past 30 years, a new correlation relying on artificial neural network (ANN) was proposed to predict the basic pulsation frequency of pulsing flow in the trickle-bed reactors. Seven dimensionless groups employed in the proposed correlation were liquid and gas Reynolds (ReL,ReG), liquid Weber (WeL), gas Froude (FrG), gas Stokes (StG) and liquid Eötvös numbers and a bed correction factor (Sb). The performance comparisons of literature and present correlations showed that ANN correlation is significantly an improvement in predicting pulsation frequency with an AARE of 10% and a standard deviation less than 18%. The effects of the variables including the properties of fluid and bed, and flow rate of liquid and gas on pulsing frequency were investigated by ANN parametric simulations and the trends were compared with exiting experimental results that confirmed the coherence of the proposed method with the previous experiments.  相似文献   

10.
The influence of liquid maldistribution at the top of the packing on flow characteristics in packed beds of gas and liquid cocurrent downflow (trickle beds) is experimentally investigated. Particular attention is paid to the effect of gas and liquid flow rates on flow development. Tests are made in the trickling and pulsing flow regimes. A uniform, a half-blocked and a quarter-blocked liquid distributor is tested. Packings of various sizes and shapes are employed. Data are presented on pressure drop and liquid holdup as well as trickling to pulsing flow transition. Diagnosis of radial and axial liquid distribution is made by means of conductance probes. The effects of liquid foaming, bed pre-wetting, top-bed material, and blockage midway the bed on liquid distribution are also examined. Overall, liquid waves in the pulsing flow regime have a beneficial effect, promoting uniform liquid distribution in the bed cross section.  相似文献   

11.
The hydrodynamics in a trickle bed reactor (TBR) in non-ambient conditions are studied for air-water and air-acetone (pure organic liquid of low surface tension) systems. A flow map experiments for air-water and air-acetone systems are performed in a pilot plant reactor of 0.05 m i.d. and 1.25 m height. It has been demonstrated from the experimental results that the pressure drop tends to increase with increasing superficial gas and liquid velocity and reactor pressure, while it tends to decrease with increasing bed temperature. The results also show that the dynamic liquid holdup increases with increasing liquid velocity and decreases with increasing superficial gas velocity, reactor pressure and bed temperature. The dynamic liquid holdup and pressure drop values are obviously higher than those measured for air-water system at the same fluid fluxes, reactor pressure and bed temperature due to the surface tension effects. For higher reactor pressure and temperature, the trickle to pulse transition boundary shifts towered higher superficial velocities of both gas and liquid.  相似文献   

12.
Three- and two-phase reactor models were developed to simulate the performance of trickle bed and slurry reactors for methanol synthesis. The combination of orthogonal collocation and quasi-linearization was used to solve the trickle bed reactor model incorporating resistance to interparticle and intraparticle diffusion and resistance to mass transfer between gas and liquid phases. Model parameters were estimated independently from either published correlations or literature data. The model predicts significant resistance to intraparticle diffusion on the performance of trickle bed reactors. However, comparisons between pilot size trickle bed and slurry reactors illustrate the superior performance of trickle bed reactors over the slurry reactors for methanol synthesis even with diffusion limitations.  相似文献   

13.
14.
本文以状态离散、时间离散的齐次Markov过程描述滴流床内液体的滴流与脉动流流动,提出了可直接计算任一床层高度上液体的流率分布和极限流率分布的方法和计算式。推导出了随机堆积球型颗粒床层中液体流动的转移概率矩阵。计算结果表明,本文模型计算值与实验值吻合较好。  相似文献   

15.
The local hydrodynamics of co-current gas-liquid down-flow through porous media are investigated in a quasi two-dimensional regular arrangement by means of a network of resistive sensors. The investigations are focused on a liquid continuous flow regime, the dispersed bubble flow, where the gas is divided into elongated bubbles. Due to the variation of the local flow channel orientation and the local void fraction, the average bubble velocity strongly depends on the local geometry. The flow is more coherent in vertical constrictions, compared to all other types of sites, this is probably due to bubble stagnation in the flow channel enlargements. At a given liquid superficial velocities and for sufficiently high superficial gas velocities, the average bubble size is independent of the gas flow rate; it is of the order of magnitude of the volume of the enlargements of the porous medium. The maximum bubble size is about three times its average size, corresponding thus to the coalescence of three average sized bubbles.  相似文献   

16.
The mechanisms of bubble motion in concurrent gas-liquid down flow through trickle beds are investigated. The laboratory reactor is a structured quasi-two-dimensional porous medium with an average pore diameter close to the values encountered in trickle beds. The accuracy of the reactor design is demonstrated by hydrodynamic investigations on the reactor scale where it is shown that the flow regimes encountered and the experimental pressure drop are comparable to those observed in trickle beds. The investigations on the pore scale are focused on the dispersed bubble flow regime where the liquid flow is continuous and the gas is divided into elongated bubbles. The bubble motion is recorded with the aid of a high-speed video camera and the images are processed and analysed in a quantitative manner. The investigations clearly show that in dispersed bubble flow, the bubbles are frequently pulsing on the pore scale. The mechanism of this flow pattern is discussed.  相似文献   

17.
The residence time distribution (RTD) of liquid phase in trickle bed reactors has been measured for air‐water system using radioisotope tracer technique. Experiments were carried out in a glass column of internal diameter of 0.152 m packed with glass beads and actual catalyst particles of two different shapes. From the measured RTD curves, mean residence time of liquid was calculated and used to estimate liquid holdup. The axial dispersion model was used to simulate the experimental data and estimate mixing index, ie. Peclet number. The effect of liquid and gas flow rates on total liquid holdup and Peclet number has been investigated. Results of the study indicated that shape of the packing has significant effect on holdup and axial dispersion. Bodenstein number has been correlated to Reynolds number, Galileo number, shape and size of the packing.  相似文献   

18.
Gamma-ray tomography and a liquid collecting device have been used to detect liquid spreading from a single point source in a trickle bed. This basic configuration has been chosen to evaluate the radial spreading of liquid flow through a fixed bed. The experimental data are used to validate the two-dimensional (2D) computational fluid dynamic model (CFD) developed at the CREL laboratory for gas/liquid trickle flows inside a fixed bed [Jiang et al., 2002. A.I.Ch.E. Journal 48, 701-730]. The data obtained show the influence of liquid and gas flow rates and the impact of pre-wetting condition on liquid distribution evolution along fixed bed axis. The comparison between experimental data and simulation results shows a significant effect of the capillary pressure term on prediction of the radial spreading of the liquid flow. Several physical models for the capillary pressure term are tested in order to select the closure law that allows a proper prediction of liquid spreading at trickle flow conditions.  相似文献   

19.
Flow maldistribution in either a bench-scale or commercial scale packed bed is often responsible for the failure of the scale down unit to mimic the performance of the large reactor. The modeling of multiphase flow in a bench-scale unit is needed for proper interpretation of reaction rate data obtained in such units. Understanding the mechanism of flow maldistribution is the first step to avoiding it. In order to achieve this objective, computational fluid dynamic (CFD) simulations of multiphase flow under steady state and unsteady state conditions in bench-scale cylindrical and rectangular packed beds are presented for the first time. The porosity distribution in packed beds is implemented into CFD simulation by pseudo-randomly assigned cell porosity values within certain constraints. The flow simulation results provide valuable information on velocity, pressure, and phase holdup distribution.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号