首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Follicular waves and associated circulating hormone concentrations were studied during the anovulatory season in pony mares (n=8). Follicles were monitored by ultrasonography and a blood sample was taken daily from 29 January until ovulation (mean, 28 April). A mid-anovulatory period (largest follicle, 16.0+/-0.5 mm in diameter) and transitional period (largest follicle, 22.4+/-0.5 mm) were distinctive in each mare. The two periods were delineated by an increase in the diameter of the largest follicle to >/=21.0 mm. Follicular waves, identified by significant increases in the mean diameter of the second to sixth largest follicles, were detected during both the mid-anovulatory and transitional periods. The mean number of follicles >/=15.0 mm in diameter and the diameter of the second to sixth largest follicles increased in association with statistically identified FSH surges. The pattern of the FSH concentration changes during surges did not change during the mid-anovulatory and transitional periods. During the declining portion of the FSH surge, follicle growth continued and circulating total inhibin increased, indicating suppression of FSH by inhibin from the growing follicles. Circulating oestradiol or LH did not change relative to wave emergence. Results indicated that follicular waves occurred during the second-half of the anovulatory season, even during the period of lowest follicular activity. On a temporal basis, follicular wave emergence was stimulated by surges in circulating FSH. However, the increase in follicle growth to >/=21.0 mm in diameter for the wave at the beginning of the transitional period and for the subsequent waves was not attributable to a change in the characteristics of the associated FSH surges.  相似文献   

2.
The intervals between emergence of follicular waves 1 (first wave of an oestrous cycle) and 2, and between the associated FSH surges (surges 1 and 2), were studied in control (n = 7) and recombinant bovine (rb)FSH-treated (n = 7) heifers. The expected start of the deviation in follicle diameter between the two largest follicles of wave 1 was defined as the day on which the largest follicle reached 8.5 mm (day 0). In the control heifers, circulating concentrations of FSH decreased and oestradiol increased between day 0 and day 1.5 or day 2.0 in a reciprocal relationship. The opposite reciprocal relationship between an FSH increase and an oestradiol decrease occurred during the next 3 days. This temporal result is consistent with a negative systemic effect of oestradiol on FSH at this time. rbFSH was administered in a dosage regimen that was expected to result in a similarity between FSH surge 2 in the rbFSH-treated group and surge 2 in the control group. On average, surge 2 and wave 2 occurred approximately 2 days earlier in the rbFSH-treated group than in the control group, and characteristics of the FSH surge and follicular wave were similar (no significant differences) between groups. These results support the hypothesis that low circulating FSH concentrations after the deviation in follicle diameter control the interval to emergence of the subsequent follicular wave. However, in one of seven rbFSH-treated heifers, the largest follicle from the apparent stimulation of rbFSH reached only 5.7 mm; therefore, the possibility of involvement of additional mechanisms cannot be dismissed.  相似文献   

3.
The aim of this study was to investigate whether human FSH without contaminating LH can exert a normal superovulation response in cows. One group of heifers (n = 9) was stimulated with recombinant human FSH (rhFSH), an FSH source without any LH activity, and another group (n = 9) was treated with equine chorionic gonadotrophin (eCG), an FSH source with high LH activity. Daily transrectal ultrasonography showed that eCG- and rhFSH-stimulated heifers (n = 9 per group) had the same follicular growth characteristics and equal numbers of follicles > 8 mm in diameter after 3 days of stimulation. The treatment groups differed considerably in steroid production: rhFSH-treated heifers produced much lower oestradiol concentrations than did eCG-stimulated heifers during the first days of stimulation and much lower progesterone concentrations in the period after the LH surge. During the 27-35 h after prostaglandin injection, rhFSH-treated heifers had fewer LH pulses than did eCG-treated heifers (0.3 versus 3.0 per heifer, respectively; n = 3 per group). All rhFSH-treated heifers (n = 6) underwent a preovulatory LH surge, but this occurred significantly later than in the eCG-treated heifers (n = 4; 39.4 +/- 1.9 h versus 47.1 +/- 1.5 h in rhFSH- and eCG-treated heifers, respectively). Multiple ovulations occurred in only three of six rhFSH-treated heifers, but in all four eCG-treated heifers with an LH surge. At 24 h after the LH surge, the percentage of metaphase II stage oocytes with cortical granules distributed close to the oolemma was significantly lower in the rhFSH group (7.3%) than in the eCG group (55.9%). In conclusion, final follicular maturation is impaired in heifers treated with rhFSH, which might be due to the combination of a lack of LH activity in the gonadotrophin preparation and the severe suppression of LH pulsatility.  相似文献   

4.
Antral follicle development in cattle is initially FSH dependent and then LH dependent. The aim of the present study was to determine the effects of oestradiol- and progesterone-induced suppression of FSH and LH on growth and differentiation of first wave follicles. Cyclic heifers (n = 45, n = 6-10 per group) received the following i.m. injections or treatments beginning 30 h after oestrus: (i) saline (controls); (ii) 0.75 mg oestradiol benzoate (ODB); (iii) insertion of a progesterone-releasing intravaginal device (PRID) for 42 h (progesterone); (iv) 0.75 mg oestradiol benzoate plus PRID (ODB plus progesterone); (v) 0.75 mg ODB plus injection of 1 mg Ovagen(TM) at 33, 39 and 45 h after onset of oestrus (ODB plus FSH). In Expt 1, follicle development was monitored by ovarian ultrasonography once a day. In Expt 2, heifers were ovariectomized. Emergence of the first follicle wave and dominant follicle selection were delayed in ODB plus progesterone-treated heifers compared with controls. Interval to nadir FSH concentration was shorter in ODB-, progesterone- and ODB plus progesterone-treated heifers compared with controls. Frequency of LH pulses was unaffected in ODB- or ODB plus FSH-treated heifers, decreased in progesterone-treated heifers and further decreased in ODB plus progesterone-treated heifers. Intrafollicular oestradiol concentrations were lower in the largest follicle from ODB plus progesterone-treated heifers compared with control (66 h) heifers, but follicle diameter and concentrations of insulin-like growth factor binding proteins (IGFBPs) and inhibin forms were unaffected. Treatment with ODB decreased follicular oestradiol concentration in smaller follicles in the cohort. It is concluded that growing cohort follicles are uniformly responsive to increased FSH concentration but differentially responsive to suppressed FSH and LH release, which is consistent with an LH-mediated survival advantage of the largest follicle in the cohort before cessation of the growth of remaining follicles in the cohort occurs.  相似文献   

5.
Follicle growth and circulating hormone concentrations were compared between an interovulatory interval and the first 60 days of the anovulatory season in pony mares. Daily observations were made from November of three groups: (i) ablation of follicles of >/=6 mm in diameter at day 10 after an ovulation that initiated an interovulatory interval, as determined retrospectively (ovulatory group, n=8), (ii) ablation at day 10 after the last ovulation of the year (anovulatory-10 group, n=6); and (iii) ablation at day 60 after the last ovulation of the year (anovulatory-60 group, n=6). Follicular waves were defined as major (dominant follicle) and minor (no dominant follicle). The percentage of mares with major waves after ablation for the ovulatory, anovulatory-10 and anovulatory-60 groups was 100, 33 and 0%, respectively, and the percentage with minor waves was 0, 67 and 100%, respectively. Minor waves were also detected in 83% of anovulatory mares between day 20 and day 60. Growth of the largest follicle was similar for major waves and minor waves but only until the beginning of deviation in the major waves. FSH surges after ablation were similar for all groups and for surges detected during days 20-60. Concentrations of LH were greater in association with major waves than with minor waves. Both diameter of the largest follicle and LH concentrations for minor waves were greater after ablation at day 10 after the last ovulation of the year than after ablation at day 60. The results of this study indicate that major follicular waves developed in some mares early in the anovulatory season and that minor waves developed throughout the first 2 months. Despite similarities in the wave-stimulating FSH surge, differences in follicle growth occurred and were attributable, on a temporal basis, to differences in LH concentrations. A minor wave developed into a major wave when the largest follicle reached a diameter characteristic of the beginning of deviation in the presence of an adequate LH stimulus for continued growth of a dominant follicle.  相似文献   

6.
The aim of this study was to differentiate between pituitary and ovarian actions of the FecB gene by measuring the ovarian response to a standardized treatment with gonadotrophins designed to mimic the changes in FSH and LH that occur in the follicular phase of the ovarian cycle in ewes, with (Fec(B/-), n=6) and without (Fec(+/+), n=9) the gene, that were rendered hypogonadotrophic by pretreatment with a potent antagonist of GnRH. Ewes with ovarian autotransplants were used to facilitate the assessment of follicular function by the collection of ovarian venous blood and ultrasonography. The gonadotrophin regimen resulted in concentrations of FSH and LH that were similar to concentrations found in a normal cycle and did not differ between genotypes. Follicular development and ovulation occurred in all animals, and patterns of secretion of oestradiol, androstenedione and inhibin A were normal. Despite these endocrine similarities, the antral follicle population stimulated by FSH infusion retained the characteristic genotypic difference with the ovaries of Fec(+/+) animals containing a range of follicle sizes with decreasing proportions of small (<3.5 mm in diameter) and medium (3.5-4.5 mm in diameter) follicles as well as large follicles (> or =4.5 mm in diameter), whereas the ovaries of Fec(B/-) ewes contained no follicles of >4.5 mm in diameter. This genotypic difference was retained after ovulation with gene carriers having more preovulatory follicles/corpora lutea (3.8+/-0.3) of a smaller diameter (5.3+/-0.3 mm) than did non-gene carriers (1.7+/-0.3; 11.4+/-0.9 mm; P<0.05). As ewes carrying the FecB gene mutation were able to ovulate more follicles than non-gene carriers, despite identical concentrations and patterns of FSH and LH stimulation, the results of this study support the hypothesis that the FecB gene acts at the ovary to enhance ovarian sensitivity to gonadotrophic stimulation.  相似文献   

7.
A study was conducted to determine the effects of FSH and bovine somatotrophin on the expression of mRNA encoding the gonadotrophin receptors and steroidogenic enzymes in ovarian follicles of cattle rendered hypogonadotrophic by treatment with a GnRH agonist. Hereford x Friesian heifers were allotted into two pretreatment groups: controls (n = 10) and GnRH agonist-treated (n = 20). Ovaries of control cows were removed on day 2 of the first follicular wave after synchronized oestrus. GnRH agonist-treated heifers were given either FSH or no FSH. FSH was infused at 50 microg h(-1) for 48 h. Ovaries in GnRH agonist-treated heifers were removed at the end of exogenous hormone treatment. The control, GnRH agonist and GnRH agonist plus FSH treatment groups were divided further into bovine somatotrophin or no bovine somatotrophin treatments (n = 5 per treatment). Bovine somatotrophin (25 mg day(-1) by s.c. injection) was administered for 3 days. Ovaries were scanned once a day by ultrasonography. Blood samples for hormone measurements were collected three times a day from oestrus until the time of removal of ovaries. Expression of mRNAs for the FSH and LH receptors and cytochrome P450 side-chain cleavage (P450scc), cytochrome P450 17alpha-hydroxylase (P450c17) and cytochrome P450 aromatase (P450arom) enzymes was localized by in situ hybridization and quantified by image analysis. Ovarian follicular growth was arrested at < or = 4.5 mm in diameter in GnRH agonist-treated heifers. There was no effect of bovine somatotrophin on follicular dynamics, gonadotrophin secretion or expression of mRNA for either the gonadotrophin receptors or steroidogenic enzymes. Infusion of FSH to GnRH agonist-treated heifers increased FSH concentrations in serum to the physiological concentrations observed in controls and stimulated growth of follicles to a size similar (5.5-8.0 mm in diameter) to recruited follicles in control cows. FSH induced mRNA expression of P450scc and P450arom in granulosa cells of follicles at a smaller size (< or = 4.5 mm in diameter) than in controls and increased (P < 0.001) expression in larger (> 4.5 mm in diameter) follicles. Expression of mRNAs for P450scc and P450c17 increased (P < 0.001) with increasing follicle size and was higher (P < 0.01) in theca cells of GnRH agonist plus FSH-treated heifers than in the other groups. There were no treatment differences in expression of FSH receptor in granulosa cells or LH receptor in theca cells, but expression of both receptors increased with follicle size. There was no expression of LH receptor in the granulosa cells of cows from any treatment group. In conclusion, FSH treatment in GnRH agonist-treated heifers induced similar changes in follicular growth to those observed during the first follicular wave, but despite similar peak concentrations, prolonged exposure to high FSH induced precocious expression of mRNAs for P450scc and P450arom in granulosa cells from small follicles and markedly upregulated expression of these enzymes in granulosa cells from recruited follicles. The results of this study demonstrate the key role that FSH plays in the induction of follicular growth and differentiation.  相似文献   

8.
The role of the number of follicles and circulating immunoreactive inhibin in the decrease in plasma FSH concentrations that occurs during development of a follicular wave was studied in mares. All follicles > or = 6 mm in diameter were ablated by ultrasound-guided transvaginal aspiration of follicular fluid on day 10 after ovulation. During the subsequent wave, all follicles, the three largest follicles (three follicle group), the largest follicle (single follicle group) or no follicles were retained and the remaining follicles were ablated before they reached > 10 mm in diameter (n = 10-11 mares per group). Ablation of new follicles was continued until the day on which the largest follicle of the new wave reached 25 mm in diameter (day 18 after ovulation in the 'no follicle' group). Diameters of retained follicles were measured once a day by transrectal ultrasonography. Plasma samples were taken once a day and analysed by radioimmunoassay for concentrations of FSH and immunoreactive inhibin (includes dimeric inhibin as well as free alpha-subunit forms). Data were normalized to the day of the expected start of the decrease in plasma FSH concentrations (day 0: largest follicle 13 mm in diameter in the follicle-retained groups). A simultaneous increase in circulating concentrations of FSH (P < 0.05) and immunoreactive inhibin (P < 0.05) occurred before the largest follicle reached 13 mm in diameter, which indicates that immunoreactive inhibin produced by follicles < 13 mm in diameter did not suppress FSH. Plasma concentrations of FSH decreased (P < 0.05) and immunoreactive inhibin concentrations increased (P < 0.05) after day 0 in the follicle-retained groups. A slower decrease in FSH concentrations was associated temporally with a delay in the increase in immunoreactive inhibin concentrations in the 'single follicle' group relative to the 'three follicle' and 'all follicle' groups. All follicle-retained groups had similar plasma concentrations of FSH and immunoreactive inhibin after the expected beginning of deviation in growth rates between the two largest follicles (largest follicle 22-23 mm in diameter). These results indicated that the decrease in plasma FSH concentrations from the start of the decrease until the expected day of deviation was a function of multiple follicles of a wave and was attributable to the secretion of inhibin. Thereafter, the largest follicle alone accounted for the continued FSH suppression.  相似文献   

9.
Follicle growth and associated changes in circulating hormone concentrations were evaluated after follicle ablation in mares (n = 13) during four 13 day periods beginning at means of -98.5, -61.4, -26.0 and 10 days from the first ovulation and corresponding to mid-anovulatory, early-transitional, late-transitional and ovulatory periods, respectively. During each period, all follicles > 5 mm in diameter were ablated (day 0) followed by no subsequent ablations (all-follicle group) or the ablation of all follicles > 5 mm when a new follicle reached > 10 mm (0-follicle group). A follicular wave emerged at means of days 1.5-2.5 in all mares of the all-follicle group during each period. Follicle activity increased between the mid-anovulatory and the transitional periods, as indicated by increases in the diameter of the largest follicle and the number of follicles in the all-follicle groups; nonetheless, there were no differences in the FSH concentrations of the wave-stimulating surge throughout the study. Circulating total inhibin increased between day 3 and day 6 in the all-follicle groups but not in the 0-follicle groups, and was higher during the late-transitional and ovulatory periods than during earlier periods in the all-follicle groups. In the all-follicle groups, circulating FSH decreased between day 3 and day 6. In the 0-follicle groups, FSH did not decrease and was higher during the late-transitional and ovulatory periods than during the mid-anovulatory period. Circulating LH was higher during the late-transitional and ovulatory periods than during earlier periods and was not different between the all-follicle and 0-follicle groups. On the basis of temporal relationships, it was concluded that the follicles of a wave secreted inhibin during all periods and the follicular inhibin suppressed circulating FSH. An increase in circulating inhibin induced by the growth of follicles > 21 mm in diameter during the late-transitional and ovulatory periods counteracted a stimulatory effect on FSH mediated by season.  相似文献   

10.
Changes in systemic concentrations of FSH, LH, oestradiol and progesterone during the ovulatory follicular wave were compared between 30 mares and 30 women. Based on a previous study, the emergence of the future ovulatory follicle was defined as occurring at 13.0 mm in mares and 6.0 mm in women, and deviation in diameter between the two largest follicles was expected to begin at 22.7 mm in mares and 10.3 mm in women. Mean FSH concentrations were high in mares during the luteal phase, resulting from statistically identified FSH surges occurring in individuals on different days and in different numbers (mean, 1.5 +/- 0.2 surges/mare); the internadir interval was 3.9 +/- 0.3 days. In contrast, mean FSH in women was low during the luteal phase and increased to a prolonged elevation during the follicular phase. The prolonged elevation was apparent in each individual (internadir interval, 15.2 +/- 0.4 days). Changes in LH or oestradiol concentrations encompassing deviation were not detected in mares, but both hormones increased slightly but significantly between emergence and deviation in women. The hypothesis that a greater number of growing follicles causes a greater predeviation decrease in FSH was supported for mares (r, -0.39; P< 0.04), but a similar negative correlation (r, -0.36) was not significant in women. The hypothesis that the increase in oestradiol during the luteal phase in women was at least partly attributable to luteal-phase anovulatory follicular waves was not supported. Normalization of FSH concentrations to the day of emergence showed maximum value on the day of emergence with a significant increase and decrease on each side of emergence in both species. The day of expected deviation occurred 3 days after emergence during the decline in FSH in both species. These results indicated that the previously reported striking similarities in emergence and deviation between mares and women during the ovulatory follicular wave are associated with species similarities in the temporal relationships between follicle events and FSH concentration changes. Thus, mares may be useful research models for studying the role and mechanism of the action of FSH in emergence and deviation during the ovulatory follicular wave in women.  相似文献   

11.
The aim of this study was to evaluate the expression pattern of fibroblast growth factor 2 (FGF2), its receptor variants (FGFR1IIIc, FGFR2IIIc) and nucleolin in time-defined follicle classes before and after GnRH application and after ovulation in the cow. Ovaries containing preovulatory follicles or new corpora lutea (CL) were collected at approximately 0, 4, 10, 20 and 25 h (follicles) and 60 h (new CL) relative to injection of GnRH to induce an LH surge (n = 5 animals per group). The expressions of FGF2 and FGFR1IIIc mRNA were significantly up-regulated only in the follicle group 4 h after GnRH (during the LH surge) with a significant down-regulation immediately afterwards. Western blot analyses showed two protein bands with at 22 and 18 kDa with apparent up-regulation beginning with the LH surge (4 h) and maximum levels 20 h after GnRH. FGF2 protein in follicles collected at 0 h (before LH surge) was localised in theca tissue (endothelial and pericytes of blood vessels) but not in granulosa cells (GCs). The FGF2 staining (by immunohistochemistry) pattern changed dramatically after the LH surge for a short period (about 2 days) and FGF2 protein was localised dominantly in the nucleus of many GCs, while most capillary endothelial cells were FGF2 immunonegative. In conclusion, the novel observation of FGF2 up-regulation and the distinct change in FGF2 localisation from theca (cytoplasm of endothelial cells) to the nucleus of GCs after the LH surge may be important for survival of GCs or for the transition of the GCs to luteal cells.  相似文献   

12.
The aim of this study was to examine the function of granulosa cells and hormone concentrations in follicular fluid in bovine ovarian follicles during selection of the first dominant follicle. Ovaries were obtained from beef heifers on days 1-5 after ovulation: follicles > 4 mm in diameter were dissected and follicular fluid and granulosa cells were collected from individual follicles. Oestradiol production by granulosa cells after culture with testosterone was used to determine aromatase activity and responsiveness to gonadotrophins was determined by cAMP production after culture with FSH or LH. Concentrations of oestradiol, progesterone and insulin-like growth factor binding proteins (IGFBPs)-4 and -5 were measured in follicular fluid. Follicles were classified as largest or smaller (days 1 and 2), or dominant or subordinate (days 3-5). Aromatase activity was greater in granulosa cells from the largest follicle than in granulosa cells from smaller follicles on days 1, 3, 4 and 5 (P < 0.05). Responsiveness to LH was not detected in granulosa cells on day 1, but from day 2 to day 5 cells from the largest follicle were significantly more responsive than cells from smaller follicles (P < 0.05). Responsiveness to FSH was detected in granulosa cells from all follicles from day 1 onwards and did not differ between cells from the largest follicle or smaller follicles on any day. Follicular fluid concentrations of oestradiol and the ratio of oestradiol:progesterone were greater and concentrations of IGFBP-4 and -5 were lower in the largest follicle than in smaller follicles from day 2 to day 5 (P < 0.05). In conclusion, selection of the dominant follicle is associated with increased granulosa cell aromatase activity followed by increased cAMP response to LH and follicular fluid oestradiol concentrations, and decreased follicular fluid concentrations of IGFBP-4 and -5 within 2 days after ovulation.  相似文献   

13.
The LH surge initiates the luteinization of preovulatory follicles and causes hormonal and structural changes that ultimately lead to ovulation and the formation of corpora lutea. The objective of the study was to examine gene expression in ovarian follicles (n = 11) collected from pigs (Sus scrofa domestica) approaching estrus (estrogenic preovulatory follicle; n = 6 follicles from two sows) and in ovarian follicles collected from pigs on the second day of estrus (preovulatory follicles that were luteinized but had not ovulated; n = 5 follicles from two sows). The follicular status within each follicle was confirmed by follicular fluid analyses of estradiol and progesterone ratios. Microarrays were made from expressed sequence tags that were isolated from cDNA libraries of porcine ovary. Gene expression was measured by hybridization of fluorescently labeled cDNA (preovulatory estrogenic or -luteinized) to the microarray. Microarray analyses detected 107 and 43 genes whose expression was decreased or increased (respectively) during the transition from preovulatory estrogenic to -luteinized (P<0.01). Cells within preovulatory estrogenic follicles had a gene-expression profile of proliferative and metabolically active cells that were responding to oxidative stress. Cells within preovulatory luteinized follicles had a gene-expression profile of nonproliferative and migratory cells with angiogenic properties. Approximately, 40% of the discovered genes had unknown function.  相似文献   

14.
The aim of this study was to examine the effect of removal of the largest follicle or all visible follicles during the first follicle wave on subsequent follicular growth, steroid, inhibin A and gonadotrophin secretion in sheep. On day 4.5 of a synchronized oestrous cycle, ewes (n = 18) were assigned to one of three groups which underwent either no treatment (control), ablation of the largest follicle (largest follicle aspirated and cauterized via laparotomy) or ablation of all follicles (all visible follicles ablated). Between day 0 and day 10 of the oestrous cycle, blood samples were collected every 8 h and ovaries were examined daily using transrectal ultrasonography. The lifespan of the second largest follicle (number of days > 3 mm in diameter) was longer (6.7 +/- 0.9 days; P < 0.05) and the maximum diameter tended to be greater (4.8 +/- 0.3 mm; P = 0.07) in ewes in which the largest follicle was ablated than in the control ewes (3.8 +/- 0.4 days; 4.2 +/- 0.3 mm). There was no difference in the day of emergence of the second follicular wave between groups (day 6.9 +/- 0.4). However, the peak of the transient increase in FSH concentrations after ablation was earlier (day 5.67 +/- 0.15; P < 0.05) in ewes in which all follicles were ablated than in control ewes (day 6.72 +/- 0.36); the timing in ewes that had only the largest follicle ablated was intermediate (day 6.11 +/- 0.28). Serum inhibin A concentrations were about three-fold lower (P < 0.05) in both follicle ablation groups than in the control group. The numbers of follicles 2-3 mm in diameter during the first 3 days of the second follicular wave were greater in 'ablated ewes' (both groups had 2.6 +/- 0.2 follicles day-1) than in control ewes (1.7 +/- 0.3 follicles day-1). It is concluded that: (i) transient increases in FSH concentrations precede the emergence of follicle waves; (ii) ablation of all follicles on day 4.5 after oestrus advanced the timing of the next peak in FSH concentrations and the numbers of small follicles associated with the development of the second follicular wave; and (iii) ablation of the largest follicle resulted in an increase in the lifespan of the second largest follicle, indicating a regulatory role of large dominant follicles over smaller subordinate follicles.  相似文献   

15.
Follicle deviation is characterized by continued growth of the largest (developing dominant) follicle and reduced growth of the smaller (subordinate) follicles. The aim of the present study was to test the following hypotheses: (1). oestradiol contributes to the depression of circulating FSH encompassing follicle deviation and (2). oestradiol plays a role in the initiation of deviation. Heifers were treated with progesterone (n = 5) or antiserum against oestradiol (n = 7) or given no treatment (control; n = 6). On the basis of previous studies, progesterone treatment would decrease LH and thereby the circulatory and intrafollicular concentrations of oestradiol and the antiserum would reduce the availability of oestradiol. Progesterone was given in six 75 mg injections at 12 h intervals beginning when the largest follicle of wave 1 first reached >or=5.7 mm (t = 0 h). Oestradiol antiserum (100 ml) was given in a single injection at t = 12 h. Follicles of the wave were defined as F1 (largest) and F2, according to the diameter at each examination. Blood samples were collected at 12 h intervals during t = 0-72 h. Treatment with progesterone lowered the circulatory concentrations of LH by 12 h after the start of treatment (P < 0.05), and concentrations remained low compared with those of controls during the treatment period. Treatment with oestradiol antiserum had no effect on LH. Both progesterone and the antiserum treatments increased the FSH concentrations compared with controls (P < 0.05), which supports the first hypothesis. The interval from t = 0 h to the beginning of deviation was longer in the progesterone- (51.0 +/- 7.6 h; P < 0.06) and antiserum (51.4 +/- 6.3 h; P < 0.05)-treated groups than in the controls (38.0 +/- 3.7 h), which supports the second hypothesis. There was no difference among groups in the diameters of F1 and F2 at deviation. Reduced diameter (P < 0.05 or P < 0.06) of both F1 and F2 occurred in both the progesterone- and antiserum-treated groups at t = 36 h and 48 h, compared with controls. Follicle retardation occurred in both the progesterone- and antiserum-treated groups despite the high FSH concentrations, whereas LH was altered only in the progesterone-treated group. Therefore, the follicle effect can be attributed to inadequate intrafollicular oestradiol. This interpretation implies a functional local role for oestradiol in the deviation process, independent of the systemic negative effect on FSH.  相似文献   

16.
17.
Our purpose was to determine whether estradiol cypionate (ECP) could be substituted for the second GnRH injection of the standard Ovsynch protocol (injection of GnRH given 7 d before and 48 h after PGF(2alpha), with timed AI [TAI] 12 to 20 h after the second GnRH injection). Lactating dairy cows ranging from 61 to 82 d in milk at TAI were studied in 14 replicates. Main effects were hormone (ECP vs. GnRH) to induce ovulation and exposure to progesterone (P4) or not during the week preceding PGF(2alpha)-induced luteolysis. Four treatments were: 1) 100 microg of GnRH at 48 h after PGF(2alpha) (Ovsynch; n = 27); 2) same as Ovsynch, plus a P4-releasing intravaginal insert (CIDR) placed for 7 d beginning at the first GnRH injection (Ovsynch + CIDR, n = 20); 3) same as Ovsynch, but substituting 1 mg of ECP for GnRH, and injecting ECP at 24 h after PGF(2alpha) (Heatsynch; n = 33); or 4) Heatsynch + CIDR (n = 26). The largest follicle was identified by ultrasonography 24 h after PGF(2alpha) and was monitored every 6 h until ovulation. Incidence of estrus was less after GnRH (54%) than after ECP (87%), but more GnRH-treated cows had LH surges detected (95 vs. 65%) and ovulated (100 vs. 86%). Duration of LH surges, but not peak concentrations, was less after GnRH than after ECP (6.1 +/- 0.7 vs. 12.2 +/- 0.9 h). Pre-treatment with P4 reduced the incidence of LH surges but had no effects on incidence of estrus or ovulation. Intervals to the LH surge and ovulation were less after GnRH than after ECP, but intervals between onset of the LH surge and ovulation did not differ (26 +/- 2 vs. 30 +/- 3 h). We concluded that substituting ECP for GnRH resulted in more cows in estrus and slightly fewer ovulating.  相似文献   

18.
We previously established a bovine experimental model showing that the corpus luteum (CL) does not appear following aspiration of the preovulatory follicle before the onset of LH surge. Using this model, the present study aimed to determine the profile of follicular development and the endocrinological environment in the absence of CL with variable nadir circulating progesterone (P(4)) concentrations during the oestrous cycle in cattle. Luteolysis was induced in heifers and cows and they were assigned either to have the dominant follicle aspirated (CL-absent) or ovulation induced (CL-present). Ultrasound scanning to observe the diameter of each follicle and blood collection was performed from the day of follicular aspiration or ovulation and continued for 6 days. The CL-absent cattle maintained nadir circulating P(4) throughout the experimental period and showed a similar diameter between the largest and second largest follicle, resulting in co-dominant follicles. Oestradiol (E(2)) concentrations were greater in the CL-absent cows than in the CL-present cows at day -1, day 1 and day 2 from follicular deviation. The CL-absent cows had a higher basal concentration, area under the curve (AUC), pulse amplitude and pulse frequency of LH than the CL-present cows. After follicular deviation, the CL-absent cows showed a greater basal concentration, AUC and pulse amplitude of growth hormone (GH) than the CL-present cows. These results suggest that the absence of CL accompanying nadir circulating P(4) induces an enhancement of LH pulses, which involves the growth of the co-dominant follicles. Our results also suggest that circulating levels of P(4) and E(2) affect pulsatile GH secretion in cattle.  相似文献   

19.
This review integrates information on follicular and hormonal physiology and epidemiology into a novel physiological model for regulation of the ovulation rate in lactating dairy cows. First, the basic mechanisms that produce a single ovulation are examined. Follicular deviation is a critical new concept in our understanding of selection of a single dominant follicle. Follicular deviation is characterized by an abrupt deviation in the growth rates between the two largest follicles when the future dominant follicle reaches a diameter of 8.5+/-1.2 mm (mean and SD). The mechanisms involved in this selection process are not completely defined but appear to involve acquisition of LH receptors on granulosa cells of the dominant follicle, increased estradiol production by the dominant follicle, and inhibition of circulating FSH concentrations. Second, lactation number and milk production were found to be critical epidemiological factors associated with increased ovulation rate and twinning in dairy cattle. Finally, high steroid metabolism is proposed as the critical link between high milk production and double ovulation. It is proposed that high milk production increases steroid metabolism due to increased blood flow to the digestive tract and subsequently to the liver. The liver represents the primary site of steroid metabolism, and blood entering the liver is cleared of steroids. At the time of selection of the dominant follicle, the normal increase in circulating estradiol concentrations and subsequent depression in circulating FSH is blunted due to estradiol metabolism. Thus, FSH remains elevated for a time sufficient to allow follicles to undergo the physiological changes necessary to proceed to ovulation.  相似文献   

20.
The objective of this study was to determine if progesterone administered near the onset of estrus in dairy cows would block the preovulatory surge of LH and result in subsequent persistence of ovarian follicular structures. Following synchronization of estrus with prostaglandin F2 alpha, 20 multiparous, non-lactating Holstein cows were randomly assigned into three groups: 1 ml ethanol administered i.m. at 12-h intervals for 24 h (n = 6; group 1); 1 mg progesterone administered i.m. at 12-h intervals for 24 h (n = 7; group 2); 2.5 mg progesterone administered i.v. at the onset of standing estrus (n = 7; group 3). Ovarian structures were palpated per rectum on the day of estrus and twice weekly for 14 d. Blood was collected every 2 h from onset of standing estrus for 30 h, and concentrations of LH and progesterone were determined. Numbers of cows diagnosed with persistent follicles 10 d after estrus were 1 of 6 (group 1), 2 of 7 (group 2), and 5 of 7 (group 3). The preovulatory surge of LH did not occur during the sampling period (30 h) for 1 of 6, 7 of 7 and 5 of 7 cows, for groups 1, 2, and 3, respectively, and mean serum concentrations of LH were higher in group 1 than in groups 2 and 3. Serum concentration of progesterone (ng/ml) was higher in group 1 (1.9 +/- .4) than in groups 2 (.9 +/- .4) and 3 (.9 +/- .4) 10 d following estrus. Blocking the preovulatory surge of LH with exogenous progesterone resulted in persistence of ovarian follicles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号