首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Catalytic ozonation of natural organic matter on alumina   总被引:3,自引:0,他引:3  
The paper aims to show the potential of catalytic ozonation in the presence of alumina for the removal of natural organic mater from drinking water. An investigation into the efficiency of catalytic ozonation, ozonation by-products formation and their biodegradability was the main goal of the paper. Characterisation of fresh and worn alumina was also conducted. The results clearly indicated the high activity of alumina over a long period of time, which is crucial in water treatment technology. The application of alumina to the ozonation system doubled the efficiency of NOM removal from water when compared to ozonation alone. Furthermore, catalytic ozonation resulted in lower by-products and biodegradable organic carbon formation.  相似文献   

2.
To improve the quality of water supplied to the City of Seoul in Korea, a pilot-scale evaluation of how the conventional treatment process could be upgraded was conducted. Three candidate processes were evaluated and compared: a conventional process (consisting of coagulation, sedimentation, and rapid sand filtration) plus GAC (Train A); a conventional process plus ozone and GAC (Train B); and a process consisting of coagulation, sedimentation, intermediate ozone, sand filtration, and GAC (Train C). Treatment efficiency of the unit process and overall treatment trains were evaluated using several parameters such as turbidity, dissolved organic carbon (DOC), UV absorbance at 254 nm (UV254), specific ultraviolet absorbance (SUVA), micropollutants (pesticides, benzenes, and phenols), disinfection by-products (trihalomethanes (THMs), haloacetic acids (HAAs) and aldehydes), and total organic halogen (TOX). Results showed that ozone and/or GAC was effective for removing micropollutants and controlling chlorinated by-products such as THMs and HAAs. However, any synergistic effect of ozonation (adsorption and biodegradation) on GAC was observed due to the low concentration of aldehydes in raw and process water.  相似文献   

3.
Impacts of ozonation followed by biological filtration on the formation of disinfection byproducts and the production of biologically stable water were studied on pilot plant and full-scale at two U.S. locations (Oakland, CA and Tampa, FL). Also evaluated is a method to estimate bacterial regrowth potential by comparing it to assimilable organic carbon (AOC) measurements. At both locations, settled plant water is diverted to the pilot plant where it is split into two parallel trains. One train is ozonated, then Filtered through anthracite/sand dual media followed by GAC or through a GAC/sand dual media filter. The other train (control) is identical except that the water is not ozonated. The full scale plants have sedimentation, ozonation, then GAC/sand filtration.  相似文献   

4.
This study investigated the formation of aldehydes after ozonation of three real and three model waters reconstituted from hydrophobic organic material. The four main aldehyde species formaldehyde, acetaldehyde, glyoxal, and methyl glyoxal were analyzed. Formaldehyde was the dominant species formed as a result of ozonation. The different waters varied greatly with respect to aldehyde production under similar treatment conditions. Studies conducted with model waters allowed for exploring aldehyde formation as a function of various water quality parameters. Overall, the hydrophobic organic extracts appeared to have greater aldehyde formation potential than the hydrophilic organics. Aldehydes were formed in direct proportion to the total organic carbon (TOC) concentration of the water at a 1:1 ozone-to-TOC ratio. Greater aldehyde formation was observed at lower ozonation pH values. Bromide ion and inorganic carbon added to model waters appeared to have no effect on aldehyde production. Finally, Assimilable Organic Carbon (AOC) measurements exhibited a strong correlation between aldehyde production and AOC production.  相似文献   

5.
The dissolved organic carbon (DOC) properties for the influent of the BAC pilot plant have shown a 42% biodegradable fraction and a 58% non-biodegradable fraction. The biodegradable dissolved organic carbon (BDOC) was degraded entirely by biodegradation; the removal efficiency was 65–83%. The BDOC removal efficiency at empty bed contact time (EBCT) 15 minutes was larger than at EBCT 8 minutes. At increasing EBCT, a more slowly biodegradable fraction of BDOC (H2) was utilized. The non-biodegradable dissolved organic carbon (NBDOC) was removed mostly by adsorption, and the removal amount was 24–58%. Therefore, the DOC was removed by adsorption and biodegradation; the removal efficiency by biodegradation was 31%, and that by adsorption was 24%. The breakthrough behaviors of DOC and NBDOC continued to be saturated as the bed volume increased, whereas the BDOC breakthrough curves maintained a certain ratio according to the bed volume.  相似文献   

6.
The batch ozonation of some fractions of aqueous humic substances (humic, fulvic and hydrophilic acids) extracted from natural waters is studied. The reaction leads to oxidation byproducts such as low molecular aldehydes and ketoacids. Formation conditions and origin of some of them (glyoxylic, pyruvic and ketomalonic acids) regarding the extracted fraction of natural organic matter is established.  相似文献   

7.
The impact of ozonation on the reduction of chlorinated disinfection by-products formation was investigated in 15 full-scale and lab-scale drinking water facilities of Québec (Canada). Total trihalomethanes (TTHM) and the sum of six haloacetic acids (HAA6) were measured after chlorination under uniform formation conditions (UFC). Results showed that before ozonation TTHM and HAA6 average concentrations were 89.4 and 45.3 μg/L, respectively. In full-scale ozonation conditions TTHM-UFC and HAA6-UFC reductions averaged respectively 27 and 32%. After lab-scale ozonation at a O3/C of 1:1, a decrease of only 9% of TTHM was calculated, while for HAA6, reduction was not significantly impacted (30%). For BDOC, average concentrations of 0.13, 0.46, and 0.69 mg C/L were measured before and after and lab-scale ozonation, respectively. Chlorine demand (Cl2D) and immediate ozone demand (IOD) were found to be the most appropriate indicators to evaluate NOM reactivity after ozonation.  相似文献   

8.
Biodegradable organic matter formed during the ozonation of natural waters was fractionated into rapidly and slowly degradable components based on measurements of biodegradable organic carbon (BDOC). The rapidly degradable fraction (BDOCrapid) was defined using the specific BDOC reactor incubation time that resulted in biodegradation similar to that in a pilot scale biofilter. Ozone dose was found to increase the formation of BDOCrapid up to a transferred dose of 1.0 to 1.5 mg O3/mg DOC. This fraction was insensitive to DOC quantity or character. The formation of BDOCslow was not sensitive to ozone dose but was sensitive to DOC quantity.  相似文献   

9.
A novel catalyst for the ozonation process was prepared by loading manganese on the granular activated carbon (GAC). Nitrobenzene was used as a model refractory organic micropollutant in this study. The catalytic activity of GAC and the Mn-loaded GAC were studied respectively. The removal efficiency of nitrobenzene by Mn-loaded GAC catalyzed ozonation could reach 34.2–49.9%, with the oxidation efficiency being about 1.5–2.0 times higher than that achieved in GAC catalyzed ozonation and 2.0–3.0 times higher than that achieved by ozonation alone. The effect of pH and the t -butanol on the GAC/ozone process was discussed. The optimum condition for preparing the catalyst was studied.  相似文献   

10.
An improved procedure was used to isolate and fractionate natural organic matter (NOM) in water for subsequent ozonation and disinfection by-product (DBP) and color removal quantisation. Isolated NOM fractions from two different sources, accounting for approximately 50 to 60% of the dissolved organic material and 60 to 75% of the color, were characterized and then ozonated under conditions approximating those encontered during drinking water treatment. The natural waters also were ozonated. Organic DBPs of either health concern or which may contribute to biological instability of finished water were investigated, including aldehydes, oxoacids and low molecular weight carboxylic acids. pH and ozone dosage were the parameters having the greatest effect on DBP formation. On the basis of UV absorbance measurements, the fulvic acid fractions studied taken together accurately represented the natural water and may be the primary sources of precursor material for aldehydes and oxoacid DBPs. However, as yet unidentified NOM fractions contribute significantly to carboxylic acid formation upon ozonation.  相似文献   

11.
The effect of catalytic ozonation in a fluidized bed reactor (FBR) on the formation of individual disinfection by-products (DBPs) was investigated. A biofiltration column was used to evaluate the removal efficiency of biotreatment on DBP precursors. Dissolved organic carbon (DOC), simulated distribution system trihalomethanes (SDS THMs), and six simulated distribution system haloacetic acids (SDS HAA6) were monitored. The source water was polluted by domestic and agricultural effluents. Catalytic ozonation removed the concentration of DOC by 8.2-51.4% depending on the dosage of the catalyst. The decreases of SDS THMs and SDS HAA6 were 41.3-51.2% and 31.7-48.3%, respectively, under the same operating conditions. Biotreatment greatly improved the removal efficiency of DOC and decreased the formation of DBPs. Up to 81.7%, 76.1%, and 81.3% of DOC, SDS THMs precursors, and SDS HAA6 precursors were removed after the catalytic ozonation followed by biofiltration, respectively. The treatment processes also influenced the proportions of individual DBP species. The proportion of bromine-containing species from the SDS THMs and SDS HAA6 increased in water samples after being treated by biofiltration alone, ozonation alone, catalytic ozonation, and catalytic ozonation followed by biofiltration.  相似文献   

12.
The degradation by ozone of the hydrolyzed Uniblu-A (Uniblu-OH), i.e. the compound found in the spent bath resulting from dyeing process with the reactive dye Uniblu-A, has been studied with the aim of identifying intermediate as well as end by-products formed. The experimental results, obtained by ozonating (16 mg O3/L in the feed gas at 100 mL/min) aqueous solutions (500 ml) of Uniblu-OH (40 mg/L), in the presence or not of t-butanol, show that the oxy-dye is completely removed within 30 minutes and that its decay results only slightly affected by the presence of t-butanol. Several organic by-products have been identified by liquid chromatography-mass spectrometry (turboionspray interface) as a result of the oxy-dye degradation. Such by-products result from oxidation of the amino group, hydroxylation of the aromatic rings, cleavage of the alkyl chain, cleavage of the sulfoalkylbenzene group leaving substituted anthraquinone structures and cleavage of the latter structures leading to phthalic acid. Such by-products are further degraded leading to the formation of low molecular weight aldehydes and acids, nitrate and sulphate. As for the formation of inorganic end by-products, after 120 minutes of ozonation, the percentages of nitrate and sulphate conversion resulted 6 and 7 %, 53 and 89% in the absence and in the presence of t-butanol respectively.  相似文献   

13.
Common processes in potable water treatment regarding dissolved organics removal (natural organic matter, NOM, and organic micropollutants, OMP) include oxidation techniques – like ozonation -and adsorption onto granular activated carbon (GAC). This paper deals with combined ozonation and GAC filtration. Effects on water quality are discussed: partial oxidation of dissolved organics by ozone, leading to changing adsorption behavior and enhanced biodegradation in GAC columns. Special emphasis is laid on long term effects of ozone on GAC quality after several thermal reactivations. Long term experience indicates that ozonation prior to GAC filtration, leading to moderate ozone concentrations in the GAC influent, does not influence GAC quality negatively, even after more than ten reactivation cycles.  相似文献   

14.
The effects of ozonation, granular (GAC) and biological activated carbon (BAC) in the removal of natural organic matter and precursors of disinfection byproducts from drinking water were studied on pilot scale. Ozonation was determined to be the best method to reduce concentrations of the precursors of AOX, chloroform and mutagenicity, whereas BAC removed organic matter the most effectively. Reductions in TA100 mutagenicity were an average 40%, 4%, 26% in ozonated, GAC and BAC filtered water, respectively. Average reductions of AOX levels were similar at 48%, 7% and 35%, respectively. The chloroform formation potential always increased after GAC filtration.  相似文献   

15.
Two methods based on the use of granular activated carbon (GAC) and ozone to remove organic compounds from water have been investigated. Both methods have been applied to degrade an aqueous solution of gallic acid and a secondary effluent from a wastewater treatment plant (WWTP). One of the methods, namely catalytic ozonation, implies simultaneous ozonation and adsorption onto GAC. This process takes advantage of the oxidizing power of ozone and the adsorption capacity of GAC but also of the catalytic transformation of ozone into secondary oxidants on the GAC surface. The efficiency of catalytic ozonation was compared to those of single adsorption and single ozonation. It was found that the catalytic process highly improves the conversion of total organic carbon (TOC) and makes a more efficient use of ozone than the single ozonation process. To illustrate the reusability of the catalyst, the GAC was reused four times through a series of consecutive experiments. No loss of catalytic activity was observed when treating the WWTP effluent but some deactivation could be appreciated when treating the aqueous solution of gallic acid. This deactivation could be attributed to some porosity destruction and surface oxidation produced as a result of reactions of aqueous ozone on the GAC surface. The other method investigated is an adsorption-regeneration process (namely GAC/O3-regeneration) that comprises two steps: dynamic adsorption onto GAC and further regeneration of the spent GAC with gaseous ozone. The adsorption stage of the GAC/O3-regeneration experiments was carried out in a continuous flow adsorption column and breakthrough curves were obtained. It was observed that the GAC used in this work adsorbed gallic acid very efficiently but exhibited limited capacity to remove chemical oxygen demand (COD) from the WWTP effluent. The optimum ozone dose to regenerate the spent GAC after gallic acid adsorption was found to be about 0.4 g O3/g GAC, with results showing around 90% regeneration efficiency. As a result of incomplete regeneration, the GAC adsorption capacity progressively decreased with the number of adsorption–regeneration cycles. The GAC/O3-regeneration method was not successful at treating the WWTP effluent as low adsorption uptake was observed. Moreover, the GAC became damaged after regeneration because of excessive oxidation of its surface.  相似文献   

16.
The objective of this pilot study was to evaluate the performance of a GAC postfilter-adsorber for the removal from the drinking water of Athens, Greece, of the two main groups of chlorination by-products, trihalomethanes (THMs) and haloacetic acids (HAAs), as well as of dissolved organic carbon (DOC). The analyses performed during the whole operation period (638 days) showed that the GAC breakthrough capacity for DOC was much higher than the capacity for total HAAs, which was higher than that for total THMs. The removal of THMs and the most part of the removal of HAAs and DOC should be attributed to adsorption by GAC, while that of a smaller part of HAAs and DOC may be attributed to biodegradation in the adsorber bed, where dechlorination, caused catalytically by the carbon surface, favoured microbial growth. Additionally, the GAC postfilter-adsorber showed a much higher adsorption efficiency than a GAC filter-adsorber, due to the smaller size of the carbon and the lower hydraulic loading rate. Also, observed desorption incidents of THMs (mainly) and HAAs, especially during the postfilteradsorber operation, were favoured by the same factors. Formation of THMs within the GAC bed was also indicated by the mass balance of total THMs during the whole cycle.  相似文献   

17.
This article deals with the oxidation effect of ozone on the increasing fraction of biodegradable organic matter with the “ozotest” method, a laboratory technique which simulates the effect of ozonation and allows a complete oxidation assessment. Ozone treatment was performed on river water samples and sand filter effluent samples. Ozone consumption, reduction of UV absorbance and BDOC formation were monitored with applied ozone doses from 0 to 10 mg/L and with contact times from 0 to 60 min. The BDOC formation was optimum at an applied ozone dose of 0.25-0.5 mg O3 per mg DOC (contact time = 5 min) corresponding to apparition of traces of residual ozone and maximum UV reduction. Maximum ozone consumption, UV reduction and BDOC formation occurred simultaneously during the first two minutes of treatment. Concerning BDOC formation, applied ozone dose showed a greater effectiveness than contact time. For the same quantity of consumed ozone, a short contact time associated with a high ozone dose was preferable to a long contact time and a low ozone dose.  相似文献   

18.
Three ketoacids; glyoxylic acid, pyruvic acid and ketomalonic acid, were identified in ozonated drinking waters and fulvic acid solutions using gas chromatography-mass spectrometry. It was found that the concentrations of ketoacids were much higher than those of aldehydes in ozonated waters. The significance of ketoacids in finished drinking waters is discussed.  相似文献   

19.
活性炭多维电极法去除水中溶解态腐殖酸研究   总被引:11,自引:0,他引:11  
本文以活性炭多维电极法,去除水中氯消毒副产物的前驱物-溶解态腐殖酸。文章比较了活性炭多维电极法与活性炭单纯吸附的去除效果,讨论了水样pH值、Ca^2 浓度、外电压、活性炭粒径和加入量对去除效果的影响。  相似文献   

20.
The impacts of ozone dose in the formation of biodegradable dissolved organic carbon (BDOC) were studied at the North Bay Regional Water Treatment Plant (NBR). Increasing the ozone to total organic carbon ratio to 0.45 (mg/mg) resulted in the formation of BDOC. Sedimentation and filtration/adsorption were effective in removing BDOC to non-measurable levels prior to the water entering the distribution system. Data from an on-going distribution system monitoring program indicate no discernible adverse impacts on microbiological parameters from using ozone during water treatment. Heterotrophic plate count (HPC) levels were similar before and after the use of ozone. Maintaining chlorine residual levels above 0.3 mg/L appears to be important for controlling HPC levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号