首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper deals with a redundant system with two types of spare units—a warm standby unit for instantaneous replacement at the time of failure of the active unit and a cold standby (stock) unit which can be replaced after a random amount of time. The type of the failure of operative or warm standby unit is detected by inspection only. The service facility plays the triple role of replacement, inspection and repair of a unit. Failure time distributions of operative and warm standby units are negative exponential whereas the distributions of replacement time, inspection time and repair times are arbitrary. The system has been studied by using regenerative points.  相似文献   

2.
This paper deals with the cost-benefit analysis of a two unit cold standby system in which the cold standby unit replaces the failed operative unit after a random amount of time. Inspection is required to decide whether it needs type I or type II repair. Failure, repair, replacement and inspection time distributions are arbitrarily distributed. A repair man is not always available with the system, but is called for repair whenever the operative unit fails.  相似文献   

3.
This paper investigates a mathematical model of a system composed of two units—one operative and the other in cold standby. There is a single repair facility which serves the triple role of inspection, repair and replacement of a failed unit. After inspection, the unit goes to minor (major) repair with probability p(q = 1 − p). Whenever the failed unit goes to major repair, an order is immediately placed for a new unit to replace the unit under major repair. Failure, inspection and delivery time distributions are negative exponential, whereas repair time distribution is arbitrary. The system is analysed in detail using the regenerative point technique and several reliability characteristics of interest to system designers and operation managers are obtained. Earlier results are verified in particular cases.  相似文献   

4.
1 Model and Assumption In reliability analysis of repairable systems, it is usually assumed that the repair facility neither fails nor deteriorates as well as the repairman is instantaneously available. So that the repair is started immediately upon the failure of a unit provided that he is not busily repairing another unit. However, in actual practice, the repair facility in a repairable system is subject to failure and can be replaced (or can be repaired) after it fails, and certain delay ac…  相似文献   

5.
This paper develops the model for a system, having two identical units—one operative and the other cold standby. Each unit of the system has three modes—normal, partial failure and total failure. The replacement time of a failed unit by a standby unit is not negligible but is a random variable. System fails when both the units fail totally. Failure time distributions of units are exponential, whereas repair time distributions are arbitrary. Several reliability characteristics of interest to system designers and operations managers have been evaluated using the theory of regeneration point technique.  相似文献   

6.
This paper deals with the cost analysis of a two dissimilar-unit cold standby redundant system subject to inspection and two types of repair where each unit of the system has two modes, normal and failed. It is assumed that the failure, repair, replacement and inspection times are stochastically independent random variables each having an arbitrary distribution. The cold standby unit replaces the failed operative unit after a random amount of time. An inspection is required to decide whether it needs type I (minor repair) or type 2 (major repair). In this system the repairman is not always available with the system, but is called whenever the operative unit fails. The system is analysed by the semi-Markov process technique. Some reliability measures of interest to system designers as well as operations managers have been obtained. Pointwise availability, steady-state availability, busy period by a server and the expected cost per unit time of the system are obtained. Certain important results have been derived as particular cases.  相似文献   

7.
The paper deals with a redundant system with two types of spare units—a warm standby unit for instantaneous replacement at the time of failure of the active unit and a cold standby (stock) unit which can be replaced after a random amount of time. Failure time distributions of operative and standby units are exponential whereas all repair times follow arbitrary distributions. The system has been studied in detail by applying the results from the theory of semi-Markov process and mean-time-to-system-failure, steady-state availability, expected number of visits to a state, second moment of time in an up-state and expected profit of the system have been obtained.  相似文献   

8.
This paper discusses two models of two-unit standby redundant systems in which the switchover time is a random variable and the repair facility is not available for a random time immediately after each repair completion. In model I the probability distributions of the life time of the online unit and switchover time are general while all the other distributions are exponential. Model II is a cold standby system in which the probability distributions of the “preparation time” of the repair facility is exponential and all the other distributions are general. Using the regeneration point technique the availability functions of the two systems are determined. Several special cases are also discussed.  相似文献   

9.
This paper deals with a two-unit warm standby system. These units are identical, but have different failure rates and repair time distributions, when failed in operating or standby state. If the unit fails in operating state, we wait for the repairman for some maximum time or until the other unit fails, and if the unit fails in standby state we wait for the repairman until the other unit fails. On the failure of the second unit or on the completion of the maximum time, we call the repairman immediately at the higher cost.The system has been analysed to determine the various reliability measures by using semi-Markov processes and regenerative processes. Numerical results pertaining to some particular cases are also added.  相似文献   

10.
This paper deals with a redundant system with two types of spare units—a warm standby unit for instantaneous replacement of a failed operative unit and a cold standby which takes a random amount of time to become operative/warm. After each repair a unit is sent for inspection to decide whether the repaired unit is perfect or imperfect. If the repaired unit is found to be imperfect then it goes for post-repair. Using the regenerative point technique in the Markov renewal process several reliability characteristics of interest to system designers and operation managers are obtained.  相似文献   

11.
A 2-unit standby redundant system with connect switching (CS) is considered. The standby unit takes random switchover-time when the operative unit fails and CS is properly initialized in a random time after each repair. Failure-time distributions of units are exponential whereas all other distributions are arbitrary. In this note we employ the method of semi-Markov process to obtain steady-state availability of the system.  相似文献   

12.
There is a two-unit standby redundant system. Standby is kept in cold state. Whenever one unit is operating and the other is in the waiting standby state, switching is initiated on the latter after a random time. If the operative unit fails before the time to initiate switching action on the waiting standby unit, the system fails and the failed unit immediately undergoes repair type 2 along with the switching. However, if the operative unit fails when the other unit is as standby (after switchover), the failed unit undergoes repair type 1 and the unit as standby takes over the operation. All the distributions are arbitrary except failure-time, which is exponential.The system is defined with the help of states which generate a pseudo semi-Markov process. Abundant use of results from the theory of SMP has been made to obtain a large number of parameters which measure reliability characteristics of the system viz. MTSF, steady-state availability, expected number of visits to a state, conditional transition probabilities, first passage time distributions, expected profit rate, etc. Numerical examples are included to illustrate the results.  相似文献   

13.
A mathematical model of a two-unit cold standby system with critical human errors (CHE) and slow switch is investigated. The CHE leads to complete system failure, and repair and post-repair are needed before the system can be put back into operation. Slow switch means that on failure of the operative unit the switch puts the standby unit into operation after a random time. Failure time and switchover time distributions are negative exponential whereas all the repair and post repair time distributions are general. Using a regenerative point technique, we obtain various reliability characteristics which can be used to carry out the cost-benefit analysis. In a particular case, the behaviour of the cost function is also studied graphically.  相似文献   

14.
This paper discusses the stochastic behaviour of a two unit priority standby redundant system, in which priority units gets priority for all operations, with different types of repair facilities. Failure time distributions of Unit are exponential, whereas other distributions are arbitrary.  相似文献   

15.
This paper concerns a two-unit system with a cold standby and a single service facility for the performance of preventive maintenance and repair. Explicit expressions for the Laplace transforms of the availability of the system, the reliability, the mean down time during (0, t) and for the mean time to system failure have been obtained under the assumption that the failure times, the inspection times, the repair times and the preventive maintenance times of the two units are governed by distinct arbitrary general distributions. The results obtained by Srinivasan and Gopalan and by Gopalan and d'Souza are derived from the present results as special cases.  相似文献   

16.
This paper considers the stochastic analysis of a two-unit (original and duplicate) cold standby system model with preventive maintenance and replacement of the failed duplicate unit. The failed duplicate unit is non-repairable but its replacement is considered with an identical duplicate unit which is available instantaneously. Joint distributions of failure and repair/replacement times of original/duplicate units are bivariate exponential with different parameters. Various reliability characteristics of the system model under study are obtained by using regenerative point technique. Mean time to system failure and steady state availability have also been studied through graphs.  相似文献   

17.
This paper studies a single server two-unit standby system in which the standby can fail when offline and its repair starts only after knowing about its failure from its time to time inspection. The inter-inspection time is assumed to be arbitrarily distributed. Various measures of reliability useful to system designers and operations managers are obtained.  相似文献   

18.
This paper deals with the cost analysis of a two-dissimilar unit cold standby redundant system with three modes for each unit under the assumption that there is administrative delay and no priority in repair. The failure time, repair time and administrative time distributions are general and arbitrary. Some reliability measures of interest to system designers have been obtained. Moreover some previous results are derived from the present results as special cases.  相似文献   

19.
This paper deals with cost analysis of a single server two-unit (one priority and the other ordinary) cold standby system with two modes—normal and total failure. A switch is used to operate the standby unit (ordinary) and it works successfully with known probability p( = 1 ? q). Priority unit gets preference both for operation and repair. Failure and repair time distributions are arbitrary. System fails when switch or both the units fail totally. The system is observed at suitable regenerative epochs in order to obtain reliability characteristics of interest to system designers and operations managers. Explicit results for the exponential time distributions have been obtained in particular cases.  相似文献   

20.
This paper obtains various measures of reliability of a two-unit redundant system with three modes. Upon partial failure of an operative unit the cold standby starts operation only when it becomes active. A single service facility is available (1) for repairing a partially or totally failed unit and (2) to activate the cold standby unit whenever required. Failure time distributions are negative exponential while repair and activating time distributions are general.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号