首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Ceramics International》2016,42(4):4700-4708
Monocrystalline CeO2 tablet-like nanostructures and triangular prism-like nanotubes were synthesized by thermal conversion of cerium carbonate hydroxide (CeOHCO3) precursors prepared by a simple template-free hydrothermal method using Ce(NO3)3·6H2O as cerium source, CO(NH2)2 as both precipitator and carbon source and polyvinylpyrrolidone (PVP) as surfactant. X-ray diffractometer (XRD) images inferred that the as-synthesized Ce(CO3)(OH) has a hexagonal structure, and the CeO2 obtained by calcining the Ce(CO3)(OH) at 500 °C for 5 h has a cubic fluorite structure. Scanning electron microscope (SEM) was employed to reveal the transformation from tablet-like to triangular prism-like structures, and then to triangular prism-like nanotubes with the increase of temperature from 120 up to 200 °C. Monocrystalline structure was revealed by high resolution transmission electron microscope (HRTEM) and select area electron diffraction (SAED) patterns. The thermal decomposition process of the as-synthesized Ce(CO3)(OH) was investigated by thermo-gravimetric differential thermal analysis (TG–DTA) apparatus, and the possible formation mechanism of CeO2 has been discussed. The spectral properties were characterized by Fourier transform infrared spectrum (FT-IR), Raman scattering, Photoluminescence (PL) spectra and UV–vis spectroscopy. There is a red-shifting in the band gap of the material compared to bulk one, which is mainly attributed to the influences of the Ce3+ ions, oxygen vacancies and the change of morphology.  相似文献   

2.
CeO2 catalysts with different structure were prepared by hard-template (Ce-HT), complex (Ce-CA), and precipitation methods (Ce-PC), and their performance in CO2 reverse water gas shift (RWGS) reaction was investigated. The catalysts were characterized using XRD, TEM, BET, H2-TPR, and in-situ XPS. The results indicated that the structure of CeO2 catalysts was significantly affected by the preparation method. The porous structure and large specific surface area enhanced the catalytic activity of the studied CeO2 catalysts. Oxygen vacancies as active sites were formed in the CeO2 catalysts by H2 reduction at 400 °C. The Ce-HT, Ce-CA, and Ce-PC catalysts have a 100% CO selectivity and CO2 conversion at 580 °C was 15.9%, 9.3%, and 12.7%, respectively. The highest CO2 RWGS reaction catalytic activity for the Ce-HT catalyst was related to the porous structure, large specific surface area (144.9 m2?g?1) and formed abundant oxygen vacancies.  相似文献   

3.
Thermal decomposition of cerium(III) acetate hydrate, Ce(CH3CO2)3·1.5H2O, to cerium(IV) oxide, CeO2, in helium has been successfully investigated by sample-controlled thermogravimetry combined with evolved gas analysis by mass-spectrometry (SCTG–MS). Cerium(III) anhydrous acetate decomposed to cerium (IV) oxide through four decomposition steps in the temperature range of 250–800 °C. SCTG–MS was very useful to distinguish the successive decomposition accompanying the formation of the intermediate products to identify simultaneous gas evolution during the mass losses. The decomposition intermediates quenched from SCTG were characterized by X-ray diffraction (XRD) and X-ray absorption near-edge structure (XANES). The XANES revealed clearly the coexistence of Ce(III) and Ce(IV) and the valence change from cerium(III) to cerium(IV). The three decomposition intermediate products were presumed to be Ce2O(CH3CO2)4, Ce2O2(CH3CO2)2 and Ce2O2CO3. A detailed thermal decomposition mechanism of Ce(CH3CO2)3·1.5H2O is discussed.  相似文献   

4.
Nickel-based catalysts supported on mesoporous nanocrystalline gamma Al2O3 promoted with various promoters (CeO2, MnO2, ZrO2, La2O3) were prepared and employed in the carbon dioxide methanation reaction. It was found that the addition of promoters to the catalyst varied the specific surface area from 139.4 to 147.4 m2/g and CeO2 and MnO2 improved the reducibility of catalyst. The catalytic results showed that the catalyst with 2 wt% of cerium promoter possessed high activity and stability in CO2 methanation reaction and showed a high CO2 conversion of 80.3% at 350 °C.  相似文献   

5.
The origin of the effect of non-faradaic electrochemical modification of catalytic activity (NEMCA) or Electrochemical Promotion was investigated via temperature-programmed-desorption (TPD) of oxygen, from polycrystalline Pd films deposited on 8 mol%Y2O3–stabilized–ZrO2 (YSZ), an O2− conductor, under high-vacuum conditions and temperatures between 50 and 250 °C. Oxygen was adsorbed both via the gas phase and electrochemically, as O2−, via electrical current application between the Pd catalyst film and a Au counter electrode. Gaseous oxygen adsorption gives two adsorbed atomic oxygen species desorbing at about 300 °C (state β1) and 340–500 °C (state β2). The creation of the low temperature peak is favored at high exposure times (exposure >1 kL) and low adsorption temperatures (Tads < 200 °C). The decrease of the open circuit potential (or catalyst work function) during the adsorption at high exposure times, indicates the formation of subsurface oxygen species which desorbs at higher temperatures (above 450 °C). The desorption peak of this subsurface oxygen is not clear due to the wide peaks of the TPD spectra. The TPD spectra after electrochemical O2− pumping to the Pd catalyst film show two peaks (at 350 and 430 °C) corresponding to spillover Oads and according to the reaction:
The formation of the spillover oxygen species is an intermediate stage before the formation of the atomic adsorbed oxygen, Oads. Mixed gaseous and electrochemical adsorption was carried out in order to simulate the Electrochemical Promotion conditions. The initial surface coverage with oxygen from the gas phase plays a very important role on the high or low effect of polarization. In general mixed adsorption leads to much higher oxygen coverages compare with that observed either under gaseous or electrochemical adsorption. The binding strength of the atomic adsorbed oxygen (state β2) was investigated as a function of applied potential. It was found that the binding energy decreases linearly with increasing catalyst potential and work function. Similar behavior has been observed for oxygen adsorption on Pt, Ag and Au deposited on YSZ in previous studies.  相似文献   

6.
Li  Zhiyu  Chen  Jinding  Jiang  Man  Li  Linna  Zhang  Jingyi  Duan  Wenbiao  Wen  Junjie  Wang  Huimin  Liu  Mo  Zhang  Qiulin  Chen  Jianjun  Ning  Ping 《Catalysis Letters》2022,152(9):2729-2737

CuO–CeO2 (Cu–Ce) catalyst with a CuO/CeO2 mass ratio of 1 prepared by a sol–gel method is used in the CO catalytic oxidation reaction in the actual industrial sulfur-containing atmosphere. At a reaction temperature of 200 °C, the catalyst exhibits quite different stability under sulfur-containing and sulfur-free conditions. When 30 ppm SO2 was added to the feed gas, the Cu–Ce catalyst had an initial CO conversion rate of 100%, gradually decreasing after 26 h, and this catalyst completely deactivated at about 50 h. However, the CO conversion rate of the catalyst under sulfur-free conditions could be nearly maintained at 100% within the measured time range (60 h). The results of IR, Raman, and XPS characterizations proved that the accumulation of cerium sulfate on the Cu–Ce catalyst would cover the active sites of the catalyst, eventually leading to the complete deactivation of the catalyst, which provides favorable evidence for the actual industrial anti-sulfur application.

Graphical Abstract
  相似文献   

7.
CeO2‐CrOy loaded on γ‐Al2O3 was investigated in this work for the oxidative dehydrogenation (ODH) of propane under oxygen‐free conditions. The ODH experiments of propane were conducted in a fluidized bed at 500°C‐600°C under 0.1 Mpa. The prepared catalyst was characterized by N2 adsorption‐desorption measurements, H2‐temperature‐programmed reduction, O2‐temperature‐programmed desorption, NH3‐temperature‐programmed desorption, x‐ray photoelectron spectroscopy, and x‐ray diffraction. The change in the selectivity of propylene resulted from the thermal cracking of the propane and the competition for lattice oxygen in the catalyst between propylene formation and propane and propylene combustion. Therefore, to achieve higher propylene yield in the industry, the reaction temperature should be 550°C‐575°C for the 17.5Cr‐2Ce/Al catalyst. The results of H2‐TPR (from 0.2218 mmol/g‐0.3208 mmol/g) revealed that the addition of CeO2 can enhance the oxygen capacity of CrOy. Compared with that for 17.5Cr/Al, the conversion can be enhanced from 22.4% to 28.5% and the selectivity of propylene can be improved from 72.2% to 75.9% for the 17.5Cr‐2Ce/Al catalyst. In addition, CeO2 can inhibit the evolution of lattice oxygen (O2?) to electrophilic oxygen species (O2?), causing the average COx (CO and CO2) selectivity to decrease from 9.64% to 6.31%.  相似文献   

8.
The coverages and surface lifetimes of copper-bound formates on Cu/SiO2 catalysts, and the steady-state rates of reverse water-gas shift and methanol synthesis have been measured simultaneously by mass (MS) and infrared (IR) spectroscopies under a variety of elevated pressure conditions at temperatures between 140 and 160 °C. DCOO lifetimes under steady state catalytic conditions in CO2:D2 atmospheres were measured by 12C–13C isotope transients (SSITKA). The values range from 220 s at 160 °C to 660 s at 140 °C. The catalytic rates of both reverse water gas shift (RWGS) and methanol synthesis are ~100-fold slower than this formate removal rate back to CO2 + 1/2 H2, and thus they do not significantly influence the formate lifetime or coverage at steady state. The formate coverage is instead determined by formate’s rapid production/decomposition equilibrium with gas phase CO2 + H2. The results are consistent with formate being an intermediate in methanol synthesis, but with the rate-controlling step being after formate production (for example, its further hydrogenation to methoxy). A 2–3 fold shorter life time (faster decomposition rate) was observed for formate under reactions conditions, with both D2 and CO2 present, than in pure Ar or D2 + Ar alone. This effect, due in part to the effects of the coadsorbates produced under reaction conditions, illustrates the importance of using in situ techniques in the study of catalytic mechanisms. The carbon which appears in the methanol product spends a longer time on the surface than the formate species, 1.8 times as long at 140 °C. The additional delay on the surface is attributed in part to readsorption of methanol on the catalyst, thus obscuring the mechanistic link between formate and methanol.  相似文献   

9.

Abstract  

Unsupported cobalt catalysts promoted with barium (symbol Co/Ba), cerium (Co/Ce) or both (Co/Ce/Ba) were synthesized and tested in ammonia synthesis at 6.3 MPa. The Ba-free Co and Co/Ce oxide forms of the catalysts were prepared by precipitation/co-precipitation and a subsequent calcination at 500 °C. The Co and Co/Ce powders were impregnated with an aqueous solution of barium nitrite. Nitrogen physisorption and H2 chemisorption measurements revealed that cerium and barium play the role of structural promoters, which hinder the sintering of cobalt oxide during calcination and stabilize the surface of cobalt under reduction conditions. It seems that barium also modifies the surface of the active phase, i.e., cobalt. The kinetic studies of NH3 synthesis have shown that the co-promoted material (Co/Ce/Ba) is about 2–3 times more active than the system doped with barium (Co/Ba) and more than ten times as active as that with Ce. At 400 °C and at low conversion (1% NH3), the ammonia synthesis rate (TOF) over Co/Ce/Ba proved to be almost 60% as high as that obtained for the commercial iron catalyst (KMI, H. Tops?e) commonly used in ammonia plants all over the world. Moreover, at the same temperature and a high ammonia concentration (8%) the co-promoted cobalt catalyst is over two times more active than the fused iron catalyst. Another asset of the cobalt catalyst is its high thermal stability.  相似文献   

10.

Abstract  

The catalytic performance during combined steam and carbon dioxide reforming of methane (SCR) was investigated on Ni/MgAl2O4 catalyst promoted with CeO2. The SCR catalyst was prepared by co-impregnation method using nickel and cerium metal precursors on hydrotalcite-like MgAl2O4 support. In terms of catalytic activity and stability, CeO2-promoted Ni/MgAl2O4 catalyst is superior to Ni–CeO2/Al2O3 or Ni/MgAl2O4 catalysts because of high resistance to coke formation and suppressed aggregation of nickel particles. The role of CeO2 on Ni/MgAl2O4 catalyst was elucidated by carrying out the various characterization methods in the viewpoint of the aggregation of nickel particles and metal-support interactions. The observed superior catalytic performance on CeO2-promoted Ni/MgAl2O4 catalyst at the weight ratio of MgO/Al2O3 of 3/7 seems to be closely related to high dispersion and low aggregation of active metals due to their strong interaction with the MgAl2O4 support and the adjacent contact of Ni and CeO2 species. The CeO2 promoter also plays an important role to suppress particle aggregation by forming an appropriate interaction of NiO–CeO2 as well as Ni–MgAl2O4 with the concomitant enhancement of mobile oxygen content.  相似文献   

11.

Abstract  

A series of cerium-tungsten oxide catalysts was prepared by the co-precipitation method and was evaluated for the selective catalytic reduction of NO x by ammonia (NH3-SCR) over a wide temperature range. These catalysts were characterized by BET, XRD, XPS and H2-TPR analyses. The experimental studies demonstrated that, among cerium-tungsten oxides, CeO2–WO3 with a Ce/W molar ratio of 3/2 exhibited the best activity toward NH3-SCR reactions, N2 selectivity and SO2 durability over a broad temperature range of 175–500 °C at a space velocity of 47,000 h−1. The strong interaction between Ce and W could be the main factor leading to the high activity of the CeO2–WO3 mixed oxide catalyst.  相似文献   

12.
Hydrogen production from ethanol steam reforming over an Rh/CeO2 catalyst was investigated with a stoichiometric feed composition. Ethanol was entirely converted to hydrogen and C1 products (CO, CO2, CH4) at 400 °C due to the remarkable C–C bond cleavage capacity of Rh species. The Rh/CeO2 catalyst exhibited stable activity and selectivity without the obvious deactivation during 70 h on stream test. Structural analysis of the aged catalysts indicated that the strong interaction between Rh and ceria support efficiently inhibited Rh particles sintering (stable at around 2 nm) and coke formation to guarantee catalyst stability.  相似文献   

13.
New solid solution nanocrystals with fluorite‐type cubic structure in the ceria (CeO2)‐yttrium niobate (1/4Y3NbO7) system were directly formed at 120°C–240°C from the precursor solution mixtures of (NH4)Ce(NO3)6, YCl3·6H2O, and NbCl5 under mild hydrothermal conditions in the presence of aqueous ammonia. The hydrothermal formation of cubic solid solution nanocrystals in the wide composition range of CeO2 (mol%) = 10–100 in the CeO2–1/4Y3NbO7 system was effectively achieved via the assistance of the presence of CeO2 component more than 10 mol% as a promoter with the same fluorite‐type structure. The optical band gap of the solid solutions gradually decreased with increased CeO2 component. The high phase stability of the solid solutions in the CeO2–1/4Y3NbO7 system was confirmed, i.e., the single cubic phase of the solid solutions was maintained after heat treatment at 600°C–1500°C for 1 h in air. The presence of Y3NbO7 as an inhibitor and the substitutional incorporation of Y3NbO7 into the lattice, CeO2 effectively controlled the crystallite growth of CeO2, and nano‐sized cubic solid solutions with high specific surface areas were maintained after heat treatment up to 800°C–1000°C for 1 h air.  相似文献   

14.
Ce‐doped BaTiO3‐based ceramics were prepared and studied to satisfy ultra‐broad temperature stability (from ?55°C to 300°C, capacitance variation rate based on C20°C is within ±15%). The sample with 0.6 mol% CeO2 succeeds to achieve this performance with a remarkably high ceiling temperature of 300°C. Meanwhile, the sample has good dielectric and electrical properties at room temperature (εr = 1667, tanδ = 1.478%, ρV = 5.9 × 1012 Ω·cm). Ce ion can substitute for Ti ion as Ce4+ or Ba ion as Ce3+. The substitution decreases the spontaneous polarization of BaTiO3, and then weakens the ferroelectricity of BaTiO3. As a result, the temperature stability of samples is improved obviously. Besides, CeO2 addition promotes the formation of exaggerated grains, which are consisting of Ba6Ti17O40.  相似文献   

15.
Mechanical properties of tetragonal scandium-stabilized zirconium oxide (ScSZ) co-doped with cerium oxide are studied before and after a complete reduction of Ce4+ to Ce3+. Samples of 6Sc1CeSZ (i.e., 6 mol% Sc2O3, 1 mol% CeO2), 6Sc2CeSZ, and 4Sc1CeSZ are produced by pressure-less sintering in air at 1450 °C. Test pieces are annealed at 1200 °C in an atmosphere of forming gas (5% H2, 95 % N2). Vickers hardness, Young’s modulus, 4-point bending strength, and fracture toughness are measured at room temperature. Values of hardness and Young’s modulus are similar for different compositions of ScSZ:Ce and stay practically unaffected by the reduction. Both the fracture toughness and strength significantly decrease and the largest drop is measured for the 6Sc2CeSZ, having the highest concentration of cerium. The observed degradation of mechanical properties suggests that cerium-free electrolytes should be preferred for the fabrication of the electrolyte-supported planar SOFCs.  相似文献   

16.
Single-phase cerium aluminate was synthesized from mixtures of ceria and metallic aluminum by milling and firing under controlled conditions in reducing (10%H2 + 90%N2) or inert atmospheres (N2 or CO2). Firing in an inert atmosphere (CO2) did not yield conversion to cerium aluminate, and conversion was also low after firing in reducing conditions (10%H2 + 90%N2) and only improved slightly on changing from powder mixtures with coarse Al powder (15 µm) to mixtures with submicron Al (0.77 µm). High-energy milling promoted reactivity by the combined effects of improved homogeneity, decreasing grain size of the Al precursor, increase in lattice strain and decrease in crystallite size down to 40–50 nm. Extensive oxidation of the metallic Al precursor after long-term milling prevented complete conversion to cerium aluminate even after firing under reducing conditions at temperatures up to 1400°C. Thermodynamic modeling of the Al–Ce–O system provided interpretation for differences between firing in reducing and inert atmospheres. Controlled milling time hinders oxidation of Al to the poorly reactive α-Al2O3 polymorph. This was supported by thermogravimetry after controlled milling and yielded phase pure CeAlO3 at T ≥ 1200°C. The high conversion was achieved even by firing at 1100°C under an inert atmosphere.  相似文献   

17.
Although aqueous ammonia solution has been focused on the removal of CO2 from flue gas, there have been very few reports regarding the underlying analysis of the reaction between CO2 and NH3. In this work, we explored the reaction of CO2-NH3-H2O system at various operating temperatures: 40 °C, 20 °C, and 5 °C. The CO2 removal efficiency and the loss of ammonia were influenced by the operating temperatures. Also, infrared spectroscopy measurement was used in order to understand the formation mechanism of ion species in absorbent, such as NH2COO, HCO3, CO32−, and NH4+, during CO2, NH3, and H2O reaction. The reactions of CO2-NH3-H2O system at 20 °C and 40 °C have similar reaction routes. However, a different reaction route was observed at 5 °C compared to the other operating temperatures, showing the solid products of ammonium bicarbonates, relatively. The CO2 removal efficiency and the formation of carbamate and bicarbonate were strongly influenced by the operating temperatures. In particular, the analysis of the formation carbamate and bicarbonate by infrared spectroscopy measurement provides useful information on the reaction mechanism of CO2 in an aqueous ammonia solution.  相似文献   

18.
The 40 mol% CeO2‐stabilized ZrO2 ceramic was synthesized by the sol‐spray pyrolysis method and aged at 1400°C–1600°C. The effects of high‐temperature aging on its fracture toughness were investigated after heat treatments at 1500°C for 6–150 h in air. Characterization results indicated that the activation energy for grain growth of 40 mol% CeO2‐stabilized ZrO2 was 593 ± 47 kJ/mol. The average grain size of this ceramic varied from 1.4 to 5.6 μm within the aging condition of 1500°C for 6–150 h. The Ce‐lean tetragonal phase has a constant tetragonality (ratio of the c‐axis to a‐axis of the crystal lattice) of 1.0178 during the aging process. It was found that the fracture toughness of 40 mol% CeO2‐stabilized ZrO2 was determined to be 2.0 ± 0.1 MPa·m1/2, which did not vary significantly with prolonging aging time. Since no monoclinic zirconia was detected in the regions around the indentation crack‐middle and crack‐tip, the high fracture toughness maintained after high‐temperature aging can be attributed to the remarkable stability of the tetragonal phase in 40 mol% CeO2‐stabilized ZrO2 composition.  相似文献   

19.
CO2 methanation over supported ruthenium catalysts is considered to be a promising process for carbon capture and utilization and power-to-gas technologies. In this work 4% Ru/Al2O3 catalyst was synthesized by impregnation of the support with an aqueous solution of Ru(OH)Cl3, followed by liquid phase reduction using NaBH4 and gas phase activation using the stoichiometric mixture of CO2 and H2 (1:4). Kinetics of CO2 methanation reaction over the Ru/Al2O3 catalyst was studied in a perfectly mixed reactor at temperatures from 200 to 300 °C. The results showed that dependence of the specific activity of the catalyst on temperature followed the Arrhenius law. CO2 conversion to methane was shown to depend on temperature, water vapor pressure and CO2:H2 ratio in the gas mixture. The Ru/Al2O3 catalyst was later tested together with the K2CO3/Al2O3 composite sorbent in the novel direct air capture/methanation process, which combined in one reactor consecutive steps of CO2 adsorption from the air at room temperature and CO2 desorption/methanation in H2 flow at 300 or 350 °C. It was demonstrated that the amount of desorbed CO2 was practically the same for both temperatures used, while the total conversion of carbon dioxide to methane was 94.2–94.6% at 300 °C and 96.1–96.5% at 350 °C.  相似文献   

20.

Abstract  

The gaseous products of photocatalytic oxidation (PCO) of acrylonitrile on sulphated P25 in concentrations from 10 to 100 ppm at 60 to 130 °C were CO2, HCN and HNCO. This photocatalyst showed disproportionally improved performance at higher temperature and longer retention times. The temperature-programmed oxidation (TPO) after PCO disclosed possible reaction routes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号