首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have found that, during the early stages of cortical neurogenesis, both GABA and glutamate depolarize cells in the ventricular zone of rat embryonic neocortex. In the ventricular zone, glutamate acts on AMPA/kainate receptors, while GABA acts on GABAA receptors. GABA induces an inward current at resting membrane potentials, presumably owing to a high intracellular Cl- concentration maintained by furosemide-sensitive Cl- transport. GABA and glutamate also produce increases in intracellular Ca2+ in ventricular zone cells, in part through activation of voltage-gated Ca2+ channels. Furthermore, GABA and glutamate decrease the number of embryonic cortical cells synthesizing DNA. Depolarization with K+ similarly decreases DNA synthesis, suggesting that the neurotransmitters act via membrane depolarization. Applied alone, GABAA and AMPA/kainate receptor antagonists increase DNA synthesis, indicating that endogenously released amino acids influence neocortical progenitors in the cell cycle. These results demonstrate a novel role for amino acid neurotransmitters in regulating neocortical neurogenesis.  相似文献   

2.
Pharmacological modulation of gamma-aminobutyric acid-A (GABAA) receptors can provide important information on the types of subunits composing these receptors. In recombinant studies, zinc more potently inhibits alphabeta subunits compared with the alphabetagamma combination, whereas modulation by nanomolar concentrations of the benzodiazepine type 1-selective agonist zolpidem is conferred by the alpha1betagamma2 subunit combination. We examined four properties of miniature inhibitory postsynaptic currents (mIPSCs) from identified necortical pyramidal cells in rat brain slices: decay time constant, peak amplitude, rate of rise, and interevent interval. Exposure to 50 microM zinc reduced the decay time constant, peak amplitude, and rate of rise with no effect on interevent interval. Zolpidem enhanced mIPSCs in a concentration-dependent manner. Both 20 and 100 nM zolpidem increased the decay time constants of mIPSCs. In some cells, both peak amplitude and rate of rise were also enhanced. All cells treated with zinc were also responsive to zolpidem. These results show that neocortical pyramidal cells have a population of GABAA receptors sensitive to both zinc and zolpidem.  相似文献   

3.
To explore the mechanism by which methohexital (MTH) activates epileptiform activity in patients with epilepsy, we examined the effects of MTH on hippocampal CA1 and neocortical neurons via extracellular and whole-cell patch-clamp recordings in rat brain slices. Perfusion of slices with 10 to 100 microM MTH caused no significant change in glutamatergic transmission in the hippocampal CA1 region, but enhanced gamma-aminobutyric acid (GABA)A-mediated inhibitory postsynaptic currents and induced spontaneous inhibitory postsynaptic currents in neocortical and hippocampal CA1 neurons. In addition, MTH induced a tonic, bicuculline-sensitive hyperpolarization in association with increases in membrane conductance, suggesting a direct stimulation of GABAA receptors by MTH. Spontaneous epileptiform activity was not observed in the neocortex and hippocampus after exposure of slices to MTH, neither in the standard in vitro condition nor in the presence of 4-aminopyridine, which promotes rhythmic synaptic activities. We suggest that the activation of epileptiform activity in vivo by MTH may result from increased neuronal synchrony via the potentiation of GABAA-mediated synaptic inhibition.  相似文献   

4.
Discharge patterns were studied in response to iontophoretic application of acetylcholine to the soma and dendrites of 128 neocortical pyramidal neurons of layer V. Extracellular recordings were obtained from slices of the guinea-pig parietal cortex. All responses found were excitatory and were better expressed in spontaneously firing cells than in silent ones. Sensitivity to acetylcholine was approximately the same at somatic and dendritic sites in all the cells. Activation of muscarinic receptors gave rise to firing patterns with equal latencies and intensities when applied to both soma and dendrites. The latter suggests that membrane excitation elicited in dendrites by binding of acetylcholine to muscarinic cholinoreceptors is likely to propagate towards the soma through intracellular biochemical processes. Modulating effect of acetylcholine on output firing patterns, elicited by dendritic application of excitatory amino acids, included shortening of the somatic response latency and increase of response intensity and duration. We propose that, in contrast to glutamatergic excitation, the spread of cholinergic excitation along dendrites involves intra-cellular chemical signalling and results in changing the electrical properties of dendrites all over their length.  相似文献   

5.
1. The functional properties of sodium currents in acutely dissociated adult human, neonatal rat [postnatal day (P) 3 and P10], and mature rat (P21-23) neocortical pyramidal neurons were studied using whole-cell patch-clamp techniques. 2. The voltage dependence of activation and steady-state inactivation of neonatal rat sodium currents was shifted in the positive direction when compared with mature rat sodium currents. In contrast, no difference was detected between the voltage dependence of activation and steady-state inactivation of mature rat and adult human sodium currents. 3. The fast inactivation of rat (neonatal and mature) and human neocortical sodium currents were best fit with three components; a fast decay component, a slow decay component, and a persistent component. The magnitude of the persistent current in neocortical neurons averaged 1-3% of the peak current. Inactivation was faster for sodium currents in neonatal rat neocortical neurons than in mature neurons. No difference was detected in the kinetics of inactivation between mature rat and adult human sodium currents. 4. Saxitoxin (STX) inhibited neuronal sodium currents at nanomolar concentrations in neonatal and mature rat and adult human neocortical neurons. STX-insensitive channels were not detected. 5. STX affinity was also assayed using 3H-STX. A single high-affinity binding site was found in neonatal rat, mature rat, and adult human neocortical tissue. A developmental increase in STX binding site density in the rat neocortex was tightly correlated with the increase in the sodium current density (normalized to cell capacitance). Human neocortical tissue and mature rat neocortical tissue did not differ in STX binding site density or sodium current density. 6. From these electrophysiological and autoradiographic studies we conclude that 1) the increase in the normalized sodium current density and STX binding density with age postnatally reflects an increase in binding sites of sodium channels functionally expressed on neuronal membranes, 2) the functional differences in channel behavior with maturation can explain the higher threshold for excitation in neonatal neocortical neurons and the increase in accommodation or adaptation in firing in the mature neuron, and 3) mature rat neocortical neurons represent a valid model for the study of adult human pyramidal neocortical neurons in terms of Na+ channel expression and function.  相似文献   

6.
Previous studies of cats with pontile lesions indicate that a serotonergic deficit exists in the superior colliculi and that this deficit is involved in an abnormal grooming behavior. Cats with frontal neocortical lesions exhibit the same serotonergic deficit and abnormal grooming behavior. The present study with 20 male cats established that the serotonergic deficit is involved in mediation of the abnormal grooming behavior in cats with frontal neocortical lesions. Microinjections of 5-hydroxytryptophan (5-HTP) and 5-hydroxytryptamine (5-HT) into the superior colliculi abolished or significantly reduced the abnormal behavior in Ss with frontal neocortical lesions, whereas no effects of 5-HTP were observed after injections into the superior colliculi, into the tegmentum beneath the superior colliculi, or into the medial dorsal nucleus rostral to the superior colliculi. Tryptophan, noradrenaline, and gamma-aminobutyric acid had no effect on abnormal behavior when injected into the superior colliculi. Evidence implicating a serotonergic deficit in the mediation of abnormal behavior was obtained by systemic injections: The behavior was abolished with 5-HTP in Ss with frontal neocortical lesions and in adrenalectomized Ss previously treated with para-chlorophenylalanine. Findings also demonstrate that the abnormal behavior is induced by frontal neocortical lesions and not by more caudal lesions of the cortex. (16 ref) (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

7.
This study tested whether chronic oral estrogen could improve memory and alter neural plasticity in the hippocampus and neocortex of middle-aged female mice. Ovariectomized C57BL/6 mice were administered 1,000, 1,500, or 2,500 nM 17β-estradiol in drinking water for 5 weeks prior to and during spatial and object memory testing. Synaptophysin, nerve growth factor (NGF), and brain-derived neurotrophic factor (BDNF) levels were then measured in hippocampus and neocortex. The medium dose impaired spatial reference memory in the radial-arm maze, whereas all doses improved object recognition. The high dose increased hippocampal synaptophysin and NGF levels, whereas the medium dose decreased these neocortical levels. The high dose decreased neocortical BDNF levels. These data suggest that chronic oral estrogen selectively affects memory and neural function in middle-aged female mice. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

8.
Maternal aggression (maternal defense) is a fierce aggression produced by lactating females toward intruders that plays an important role in protection of vulnerable offspring. Enhancement of GABAA receptor signaling by benzodiazepines increases maternal aggression, and we recently found indirect evidence that lateral septum (LS) could be a key site where benzodiazepines elevate aggression. In this study, we directly tested the hypothesis that activation of GABAA receptors in LS would promote maternal aggression while inhibition of this receptor would decrease aggression. Site-directed injections to LS were made using the GABAA receptor antagonist, bicuculline (3–30 ng), or the GABAA receptor agonists, chlordiazepoxide, a benzodiazepine (2.5–5 μg), and muscimol (0.05–5 ng). Maternal aggression and other behavioral measures were then evaluated in lactating mice. Neither GABAA receptor agonist elevated aggression, which could reflect a ceiling effect. However, 7 ng of the GABAA receptor antagonist, bicuculline, in LS significantly decreased maternal aggression without altering other maternal behaviors or light-dark box performance, suggesting some GABAA receptor signaling in LS is required for full maternal aggression expression. Together, these results confirm a role for GABAA receptor signaling in LS in the regulation of maternal aggression. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

9.
Tetanic stimulation of high-threshold primary afferent fibers in the dorsal root was found to elicit intrinsic optical signals (IOSs) in transverse slices of 11- to 20-day-old rat spinal cords. The IOS, lasting for 30 s or longer, was most prominent in the lamina II of the dorsal horn. Treatment with a Na+-K+-2Cl- co-transport blocker, furosemide, abolished the IOS, suggesting that the origin of the IOS is the cellular swelling due to an activity-dependent rise in extracellular K+. Substance P antagonist spantide, glutamate antagonists 2-amino-5-phosphonovaleric acid and 6-cyano-7-nitroquinoxaline-2,3-dione, and the mu-opioid agonist [d-Ala2,N-Me-Phe4,Gly5-ol]-enkephalin suppressed IOSs. Thus, IOSs represent at least in part the slow excitatory response that is known to be generated in dorsal horn neurons after tetanic activation of unmyelinated afferent fibers.  相似文献   

10.
GABAA receptors are heterooligomeric ligand-gated ion channels that mediate the effect of the inhibitory neurotransmitter gamma-aminobutyric acid. The GABAA receptors consist of at least 15 different receptor subunits that can be classified into 5 subfamilies (alpha, beta, gamma, delta, rho) on the basis of sequence similarity. Chromosomal mapping studies have revealed that several of the GABAA receptor subunit genes appear to be organized as clusters. One such cluster, which consists of the GABAA receptor beta 3 (GABRB3) and alpha 5 (GABRA5) subunit genes, is located in chromosome 15q11-q13. It is shown here that the GABAA receptor gamma 3 subunit gene (GABRG3) also maps to this region. Lambda and P1 phage clones surrounding both ends of GABRG3 were isolated; the clones derived from the 5' end of GABRG3 were linked to an existing phage contig spanning the 3' end of GABRA5. The two genes are located within 35 kb of each other and are transcribed in the same orientation.  相似文献   

11.
Quantitative autoradiographic techniques were used to compare the distribution of GABAA, GABAB, and glycine receptors in the subcortical auditory pathway of the big brown bat, Eptesicus fuscus. For GABAA receptors, the ligand used was 35S-t-butylbicyclophosphorothionate (TBPS) for GABAB receptors, 3H-GABA was used as a ligand in the presence of isoguvacine to block binding to GABAA sites; for glycine, the ligand used was 3H-strychnine. In the subcortical auditory nuclei there appears to be at least a partial complementarity in the distribution of GABAA receptors labeled with 35S-TBPS and glycine receptors labeled with 3H-strychnine, GABAA receptors were concentrated mainly in the inferior colliculus (IC) and medial geniculate nucleus, whereas glycine receptors were concentrated mainly in nuclei below the level of the IC. Within the IC, there was a graded spatial distribution of 35S-TBPS binding; the most dense labeling was in the dorsomedial region, but very sparse labeling was observed in the ventrolateral region. There was also a graded spatial distribution of 3H-strychnine binding. The most dense labeling was in the ventral and lateral regions and the weakest labeling was in the dorsomedial region. Thus, in the IC, the distribution of 35S-TBPS was complementary to that of 3H-strychnine. GABAB receptors were distributed at a low level throughout the subcortical auditory nuclei, but were most prominent in the dorsomedial part of the IC.  相似文献   

12.
Benzodiazepines, which are widely used clinically for relief of anxiety and for sedation, are thought to enhance synaptic inhibition in the central nervous system by increasing the open probability of chloride channels activated by the inhibitory neurotransmitter gamma-aminobutyric acid (GABA). Here we show that the benzodiazepine diazepam can also increase the conductance of GABAA channels activated by low concentrations of GABA (0.5 or 5 microM) in rat cultured hippocampal neurons. Before exposure to diazepam, chloride channels activated by GABA had conductances of 8 to 53pS. Diazepam caused a concentration-dependent and reversible increase in the conductance of these channels towards a maximum conductance of 70-80 pS and the effect was as great as 7-fold in channels of lowest initial conductance. Increasing the conductance of GABAA channels tonically activated by low ambient concentrations of GABA in the extracellular environment may be an important way in which these drugs depress excitation in the central nervous system. That any drug has such a large effect on single channel conductance has not been reported previously and has implications for models of channel structure and conductance.  相似文献   

13.
Blockade of gamma-aminobutyric acid (GABAA) receptors in the anterior basolateral amygdala (BLA) with bicuculline methiodide results in an increase in heart rate, blood pressure and "anxiety" in rats. Glutamate receptors in the BLA are also reported to be involved in eliciting anxiety responses. The purpose of this study was to investigate the interaction between GABAergic inhibition and glutamatergic excitation in the BLA. Male Wistar rts were implanted with femoral arterial catheters and bilateral chronic microinjection cannulae into the BLA. Each animal was injected with either artificial cerebrospinal fluid (100 nl), bicuculline methiodide (10 pmol/100 nl) or bicuculline methiodide + one dose of an antagonist of either the N-methyl-D-aspartate receptor [AP5 (20 and 100 pmol) and dizocilpine (25 and 125 pmol)] or the non-N-methyl-D-aspartate ionotropic receptor [CNQX (10 and 50 pmol) and GYKI 52466 (50 and 250 pmol)]. Increases in heart rate, blood pressure and "anxiety" (as measured in the social interaction test) observed in rats after bicuculline methiodide injections into the BLA were blocked in a dose dependent manner with the concurrent injections of either N-methyl-D-aspartate or non-N-methyl-D-aspartate antagonists, suggesting that activation of both subtypes of glutamate ionotropic receptors may be necessary for the responses elicited by GABAA receptor blockade in the basolateral amygdala.  相似文献   

14.
alpha-Chloralose is widely used as an anesthetic in the laboratory due to its minimal effects on autonomic and cardiovascular systems, yet little is known about its mechanism of action. We examined the effects of alpha-chloralose on gamma-aminobutyric acid type A (GABAA) receptor activity because recent studies have shown that several classes of general anesthetics modulate the function of this receptor. GABAA receptor activity was assayed by measuring the GABA-induced current in Xenopus oocytes expressed with human GABAA receptor alpha-1, beta-1 and gamma-2L subunits. alpha-Chloralose produced a concentration-dependent potentiation of the GABA-induced current with an EC50 value of 49 microM and a maximal effect of 239% of control. Membrane current was not affected by alpha-chloralose in the absence of GABA. alpha-Chloralose (100 microM) increased the affinity for GABA 5-fold and produced a small (17%) increase in the efficacy of GABA. Measurement of the reversal potentials for the alpha-chloralose response suggested that the effect is mediated through increased Cl- conductance. Studies of alpha-chloralose interactions with other allosteric modulators determined that alpha-chloralose binds to a site on the GABAA receptor complex distinct from the benzodiazepine, neurosteroid and barbiturate sites. Chloral hydrate, trichloroethanol and urethane also augmented GABA-induced currents. alpha-Chloralose had no effect on the hydroxytryptamine-induced currents in oocytes expressed with the 5-hydroxytryptamine3 receptor. These data extend the number of classes of anesthetics that allosterically modulate GABAA receptor activity and indicate that GABAA receptors may be a common site of action for diverse classes of general anesthetics.  相似文献   

15.
Estrous cycle-related variations of spatial reference memory and neurochemistry in intact female mice were examined. Spatial reference memory was tested in cycling females, ovariectomized (OVX) females, and males by using a 1-day water maze protocol. Choline acetyltransferase (ChAT) and glutamic acid decarboxylase (GAD) activities were measured in the hippocampus and neocortex. Estrus females exhibited worse spatial acquisition and 30-min retention than did proestrus and metestrus females, higher neocortical ChAT activity than proestrus females, and higher neocortical GAD activity than OVX females and males. Neocortical, rather than hippocampal, neurochemistry was more sensitive to hormonal modulation, suggesting that hormonal mediation of neocortical function may play a critical role in regulating spatial reference memory in female mice. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

16.
Neurons in the central nucleus of the inferior colliculus (ICc) typically respond with phase-locked discharges to low rates of sinusoidal amplitude-modulated (SAM) signals and fail to phase-lock to higher SAM rates. Previous studies have shown that comparable phase-locking to SAM occurs in the dorsal nucleus of the lateral lemniscus (DNLL) and medial superior olive (MSO) of the mustache bat. The studies of MSO and DNLL also showed that the restricted phase-locking to low SAM rates is created by the coincidence of phase-locked excitatory and inhibitory inputs that have slightly different latencies. Here we tested the hypothesis that responses to SAM in the mustache bat IC are shaped by the same mechanism that shapes responses to SAM in the two lower nuclei. We recorded responses from ICc neurons evoked by SAM signals before and during the iontophoretic application of several pharmacological agents: bicuculline, a competitive antagonist for gamma-aminobutyric acid-A (GABAA) receptors; strychnine, a competitive antagonist for glycine receptors; the GABAB receptor blocker, phaclofen, and the N-methyl-D-aspartate (NMDA) receptor blocker, (-)-2-amino-5-phosphonopentanoic acid (AP5). The hypothesis that inhibition shapes responses to SAM signals in the ICc was not confirmed. In >90% of the ICc neurons tested, the range of SAM rates to which they phase-locked was unchanged after blocking inhibition with bicuculline, strychnine or phaclofen, applied either individually or in combination. We also considered the possibility that faster alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptors follow high temporal rates of incoming excitation but that the slower NMDA receptors could follow only lower rates. Thus at higher SAM rates, NMDA receptors might generate a sustained excitation that "smears" the phase-locked excitation generated by the AMPA receptors. The NMDA hypothesis, like the inhibition hypothesis, was also not confirmed. In none of the cells that we tested did the application of AP5 by itself, or in combination with bicuculline, cause an increase in the range of SAM rates that evoked phase-locking. These results illustrate that the same response property, phase-locking restricted to low SAM rates, is formed in more than one way in the auditory brain stem. In the MSO and DNLL, the mechanism is coincidence of phase-locked excitation and inhibition, whereas in ICc the same response feature is formed by a different but unknown mechanism.  相似文献   

17.
18.
Loreclezole, an anticonvulsant and antiepileptic compound, potentiates gamma-aminobutyric acid (GABA) type A receptor function, by interacting with a specific allosteric modulatory site on receptor beta-subunits. A similar selectivity for GABAA receptor beta-subunits is apparent for the direct activation of receptor-operated Cl- channels, by the general anesthetics propofol and pentobarbital. The ability of loreclezole to activate GABAA receptors directly has now been compared, biochemically and electrophysiologically, with that of propofol. In well-washed rat cortical membranes (devoid of endogenous GABA), loreclezole and propofol increased t-[35S]butylbicyclophosphorothionate ([35S]TBPS) binding by up to 28% (at 5 microM) and 80% (at 10 microM), respectively. Higher concentrations (50-100 microM) of both compounds inhibited [35S]TBPS binding with great efficacy, an effect mimicked by GABA. In contrast, the benzodiazepine diazepam increased [35S]TBPS binding, but failed to inhibit this parameter, even at high concentrations. At concentrations of 50-100 microM, loreclezole induced inward Cl- currents in the absence of GABA, in Xenopus oocytes expressing human recombinant GABAA receptors, comprised of alpha 1-, beta 2- and gamma 2S-subunits. At 100 microM, the current evoked by loreclezole was 26% of that induced by 5 microM GABA. The current evoked by 100 microM propofol was 98% of that induced by 5 microM GABA. Currents induced by loreclezole, like those evoked by propofol, were potentiated by diazepam in a flumazenil-sensitive manner and blocked by either bicuculline or picrotoxin. These data suggest that loreclezole shares, with propofol, an agonistic action at GABAA receptors containing the beta 2-subunit and that the different efficacies of the two compounds in this regard, may underlie the difference in their pharmacological profiles. The failure of loreclezole to activate GABAA receptors containing the beta 1-subunit may be responsible for its lack of hypnotic effect.  相似文献   

19.
GABAA agonists do not respond to the same degree to allosteric modulators of the GABAA receptor complex such as benzodiazepines. We report there the effects of two steroids (alfaxalone and pregnenolone sulfate) on the inhibition induced by two GABAA agonists, 3-amino propane sulphonic acid (3-APS) and muscimol, on the extracellular evoked potentials obtained in CA1 of mice hippocampi. Alfaxalone (1 microM) potentiates the effects of both agonists, although incubation times longer than 15 minutes are required to potentiate the inhibitory effect of muscimol. Lower doses of pregnenolone sulfate at shorter incubation periods are able to inhibit the effects produced by single doses of 3-APS as compared to muscimol (15 microM during 5 min vs 30 microM during 5 min). Our results confirm the possibility that there might be differences in the interaction between GABAA agonists and modulatory steroids.  相似文献   

20.
The diagonal band of Broca (DBB) is involved in a wide array of physiological functions which are, in part, mediated by activation of GABAA receptors. DBB is enriched in GABA and protein tyrosine kinase (PTK) immunoreactivity. Whole-cell patch-clamp recording were performed from acutely dissociated DBB neurons to investigate the involvement of PTK in GABAA receptor function. The activation of GABAA receptor by the selective agonist, muscimol (5 microM) was dependent on the presence of intracellular ATP. Omission of ATP in the intracellular medium resulted in a fast decrement of the response whereas inclusion of sodium orthovanadate (100 microM), a non-specific phosphatase inhibitor, augmented the response and inhibited 'run down' of the response. Genistein (100 microM) and tyrphostin B-44 (-), specific inhibitors of PTK, attenuated the response to muscimol. The muscimol response was not affected by daidzein (100 microM); an inactive analogue of genistein) nor by tetraethylammonium bromide (1 mM). These observations suggest that phosphorylation is important for the activation and long term maintenance of GABAA receptor function. PTK phosphorylation, which has been previously identified as an important event in signal transduction, may modulate GABA mediated neurotransmission in the forebrain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号