首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
采用变温拉曼光谱mapping扫描技术研究了在升温过程中炭纤维(CF)增强聚酰亚胺(PI)/碳纳米管(CNTs)复合材料的微观力学行为。其中CF为增强材料,CNTs作为应力传感媒介,两者都具有拉曼温度敏感性。获得了各温度条件下(25~300℃) CF/CNTs-PI复合材料界面微区的应力分布变化图。在200℃以下,CF/CNT-PI薄膜中纤维与界面区域压应力分别在122 MPa与74 MPa附近,应力分布从纤维到基体逐渐减小。200℃为残余应力消除温度,CF/CNT-PI薄膜内部应力接近于0 MPa。然而,当加热超过200℃时,薄膜主要承受拉应力,且主要分布在CF上。此外,发现CF与基体之间的应力传递小于100%。这些结果均证明复合材料中的应力随温度而变化,而CF具有优异的增强作用。  相似文献   

2.
采用酚醛树脂作为炭纤维表面处理剂, 可以显著提高多种炭纤维和环氧树脂界面强度。通过XPS、AFM、SEM和层间剪切强度等方法, 研究了不同浓度的酚醛树脂表面处理剂对炭纤维增强环氧树脂复合材料层间剪切强度、炭纤维表面元素和化学键组成的影响, 以及炭纤维增强环氧树脂复合材料断面微观形貌的变化。XPS和AFM分析结果表明酚醛树脂和炭纤维表面发生了化学反应, 而且酚醛树脂处理剂浓度越高, 和炭纤维表面发生反应的基团也越多, 表面越光滑平整, SEM和层间剪切强度研究表明酚醛树脂处理后的复合材料界面粘结性能得到很大的改善, 而且界面粘结性能强烈依靠处理剂浓度。   相似文献   

3.
采用微球脱粘实验法研究了炭纤维/尼龙6微复合材料的界面微观力学性能,考察了不同的拉伸速率对界面微观力学行为的影响.结果显示:在拉伸速率为3.5,4,4.5mm/min,纤维在树脂基体中的包埋长度le<140μm时,树脂微球从纤维上脱粘时的力值Fmax与包埋长度le保持着良好的线性关系;当拉伸速率为5mm/min,包埋长度le>70μm时,纤维就断裂了,试样失效.  相似文献   

4.
采用聚酰胺-胺(PAMAM)树状分子化学修饰方法制备碳纳米管接枝炭纤维(CF-PAMAM-CNTs)新型增强体。利用X射线光电子能谱(XPS)、扫描电子显微镜(SEM)和原子力显微镜(AFM)对接枝前后CF表面官能团和表面形貌进行表征;利用接触角测量、单丝拉伸方法研究了接枝前后纤维单丝的润湿性能及拉伸强度,并通过微脱黏法分析了其复合材料的界面剪切强度,同时探索了CNTs的最佳接枝量。结果表明,当CNTs接枝量为15%时,CF表面粗糙度提高了180%,表面能提高了300%,拉伸强度提高了22%,复合材料的界面剪切强度提高了178%,这表明CNTs接枝有利于改善CF复合材料的界面性能。  相似文献   

5.
首次在TEM下直接观察和研究了钛(TA2)/钢(A3)界面结合层内的微观组织结构,从而在更微观的尺度上确立了界面结合层内的组织结构模型。揭示了爆炸复合界面通过局部熔化和扩散的物理冶金过程实现其“冶金结合”的机制。所建立的温度场模型可用以预测和分析界面结合层内的微观组织结构。 第一次利用TEM直接观察并研究了界面结合层内TA2例所产生的绝热剪切带(ASB)内的微观组织结构,结合ASB内的形变热力学条件首次利用动态再结晶理论和起塑变形理论阐明了ASB内细小(<0.1μm)等轴晶粒组织的产生机制及ASB内大剪切应变机制。首次基于材料热粘塑性本构失稳理论对材料本身的物理-力学-热学性能及其晶体结构相耦合进行综合分析,阐明了界面结合层内仅在TA2侧产生、ASB而在A3侧从未产生ASB的机制。 通过对界面微观断裂过程的动态观察和分析,揭示了其不同波形状态界面的微观断裂机制。 深入系统地研究了界面扩散反应区内的微观组织结构和反应相的形成、生长规律。所得结论可指导TA2/A3复合材的工业生产和应用。 本研究中有关金属在冲击载荷下的塑性变形机制和力学行为(孪生、绝热剪切等)的研究结果对研究金属在高应变率冲击载荷下的力学冶金行为具有指导意义。  相似文献   

6.
湿热循环对CCF300/QY8911复合材料界面性能的影响   总被引:2,自引:0,他引:2  
通过对CCF300/QY8911复合材料试样进行循环吸湿-脱湿处理,绘制吸湿和脱湿曲线并用Fick第二定律进行拟合,采用层间剪切强度(ILSS)表征不同湿热条件对纤维/树脂界面性能的影响,再通过SEM观察试样剖面和侧面的微观形貌。结果表明:CCF300/QY8911复合材料的吸湿和脱湿行为符合Fick第二定律,试样水浸(水温71℃)14天后达到饱和吸湿率;水对CCF300/QY8911复合材料纤维/树脂界面的破坏分为可逆和不可逆,脱湿处理会消除可逆破坏,使干态ILSS有所回复;湿热循环次数增加会进一步引起纤维/树脂界面产生不可逆破坏,使CCF300/QY8911复合材料ILSS降低,但吸湿是引起这种复合材料ILSS性能下降的主要因素。  相似文献   

7.
用SEM研究表面处理对炭纤维增强复合材料剪切断裂的影响   总被引:7,自引:5,他引:2  
利用扫描电子显微镜(SEM),对炭纤维表面处理前后,炭纤维增强复合材料(CFRP)的剪切断面的观察,并分析了不同表面处理方法对CFRP的界面性质的影响。结果表明,经气液双效法处理后,CFRP得到高的层间剪切强度(ILSS),同时表现出二剪和三剪的断裂模式。  相似文献   

8.
为改善炭纤维和聚碳酸酯界面结合性能,制备了含碳纳米管的水性聚碳酸酯上浆剂和水性聚氨酯上浆剂,通过上浆工艺将碳纳米管引至炭纤维表面.分别采用单丝段裂法和定向纤维增强聚合物基复合材料垂直方向拉伸两种方法从微观和宏观两个角度研究了上浆剂种类及碳纳米管含量对复合材料界面结合性能的影响.结果表明:上浆剂可明显改善炭纤维/聚碳酸酯...  相似文献   

9.
纳米SiO2改性上浆剂对炭纤维复合材料界面性能的影响   总被引:2,自引:1,他引:2  
利用单纤维碎裂法,三点短梁法,扫描电镜(SEM)和动态力学热分析(DMTA)研究了未上浆炭纤维、环氧树脂乳液上浆炭纤维和经纳米SiO2改性环氧树脂乳液上浆炭纤维增强树脂基复合材料(CFRP)的界面性能。结果表明:炭纤维经改性乳液上浆剂和未改性乳液上浆剂上浆后,与未上浆相比,其单纤维复合材料的界面剪切强度(IFSS)分别提高了79%和41%,复合材料的层间剪切强度(ILSS)分别提高了14%和9%。DMTA图谱显示经纳米SiO:改性上浆的CFRP其损耗角正切(tanδ)较未改性上浆的降低18%,玻璃化温度(Tg)高出5℃。说明上浆剂中添加纳米SiO2可使上浆后的CFRP界面黏结性得到显著增强。  相似文献   

10.
对高温处理前后螺旋炭纤维的微观拓扑结构进行了探究与表征,结果表明,制备态螺旋炭纤维具有类似年轮状结构的近圆形横截面,在纵截面上体现为近似鲱鱼骨结构,其石墨微晶尺寸小、取向度差;高温处理后,其三维结构可理想地看作是由石墨微晶以具有锥角的多面柱体形式沿螺旋方向堆叠而成,表观上炭纤维显示为尺寸均匀的多面柱体形貌。X射线衍射和Raman散射结果从宏观量级上证明了样品微观尺度有序度得到提高。为基于结构的性能预测和应用设计提供了可靠的参考。  相似文献   

11.
使用拉曼光谱研究了架桥纤维与裂缝微观力学,以超高分子量聚乙烯(UHMWPE)纤维为例,将纤维搭桥试样进行微拉伸试验,着重分析架桥纤维的止裂作用和架桥纤维/环氧树脂界面的应力分布,并对不同位置架桥试样的裂缝扩展速度和应力分布进行分析,并进一步运用剪切滞后模型,对架桥纤维在不同拉伸载荷下的应力分布进行了拟合分析,结果表明:架桥纤维能够分散部分外载应力,对于裂纹扩展具有显著的止裂作用。在低于UHMWPE纤维最大应变拉伸时,发现在裂缝中心位置处架桥纤维所承受的应力最大,其应力不超过2GPa,而基体树脂的应力可达到12GPa,架桥纤维/基体界面的应力传递达不到100%。以UHMWPE为架桥的应力传递模型呈"正抛物线"型,应力分布存在于粘结区、脱粘区和架桥区。  相似文献   

12.
聚丙烯腈是炭纤维的重要原材料.高质量的聚丙烯腈才有可能生产出高质量的原丝,而高质量的原丝是保证高质量炭纤维的必要条件.聚丙烯腈的分子量及其分布、等规度、共聚结构单元的比例及分布直接影响着聚丙烯腈的质量,进而影响原丝及其发纤维的性能.从聚丙烯腈分子链的微观结构(分子量及其分布、等规度、共聚结构单元的比例及分布)阐述了对炭...  相似文献   

13.
采用在炭纤维表面接枝含有不同链长的偶联剂的方法, 研究了链长对炭纤维/聚芳基乙炔复合材料界面性能的影响。纤维和树脂的浸润性通过纤维表面能的测定以及纤维表面能和浸润性的讨论进行了评价。通过复合材料界面剪切强度测试以及断口形貌分析对炭纤维/聚芳基乙炔复合材料的界面性能进行了研究。结果表明, 随着炭纤维表面链长的增长, 炭纤维/聚芳基乙炔复合材料的界面粘结性能随之提高。界面粘结性能的提高主要归因于接枝于炭纤维表面的偶联剂的分子链和聚芳基乙炔树脂分子链发生了物理缠结作用, 并且这种缠结作用随着纤维表面分子链的长度的增加而增强。   相似文献   

14.
在基体和成型工艺一定的条件下,炭纤维(CF)的表面状态决定了复合材料的界面性质通过空气冷等离子体处理、表面接技NA-酸酐和表面徐没涂层的方法对炭纤维进行表面改性:采用界面微脱粘测试技术表征不同表面处理方法对炭纤维/聚酰亚胶树脂复合材料界面剪切强度的影响;并应用TEM和图像处理技术对其界面进行直观表正计算出不同界面层厚度  相似文献   

15.
粉末冶金法炭纤维/Mg复合材料的界面对其力学性能的影响   总被引:1,自引:0,他引:1  
采用表面化学镀镍前后的短炭纤维(Cf)做为增强体,纯镁粉为基体金属,通过粉末冶金法和热挤压制备镁基复合材料.采用SEM-EDS、TEM、XRD和拉伸等测试手段表征短炭纤维增强镁基复合材料的微观形貌、元素组成、物相组成及其力学性能.结果表明:炭纤维在复合材料中分布均匀且沿挤压方向定向排列;采用经过表面化学镀镍处理的短炭纤维与金属镁复合后界面结合状态优良,Mg2Ni物相的存在表明润湿性的改善是通过金属镁与涂层发生反应而实现;对比屈服强度测试值和理论计算值的大小,表明涂层炭纤维增强镁基复合材料的增强机理主要是界面载荷传递效应.  相似文献   

16.
采用化学气相沉积法制备微螺旋炭纤维, 在氩气气氛, 2500℃下对其进行石墨化处理. 通过扫描电镜, 激光拉曼光谱和X射线晶体衍射对石墨化前后微螺旋炭纤维的形貌与微观结构进行了研究, 并初步探讨了石墨化机理. 结果表明: 石墨化处理对微螺旋炭纤维具有显著的纯化作用, 其螺旋形貌基本保持不变. 微观结构更加规整, 微螺旋炭纤维的晶面层间距d002(0.3626~0.3378nm)减小, 晶粒尺寸Lc(1.6404~3.8590nm)和La(2.04~7.21nm)增大, 石墨化程度增强.  相似文献   

17.
界面对短纤维增强金属基复合材料力学行为的影响   总被引:8,自引:2,他引:8       下载免费PDF全文
界面是复合材料中一个非常重要的因素, 本文将在实验分析的基础上建立合理的理论分析模型, 借助于轴对称和三维有限元分析方法, 对界面性能的变化对短纤维增强金属基复合材料力学行为的影响作较为系统和深入的研究, 其中包括界面性能对应力传递机制、弹性模量、应力-应变曲线以及断裂机理的影响。研究表明, 界面性能的好坏显著影响基体与纤维间的应力传递, 从而对复合材料的弹性模量、应力-应变行为和断裂机理产生较大的影响, 界面控制是复合材料设计中不可忽视的重要环节。   相似文献   

18.
张进  蒋鹏  姜红  刘峰  段斌 《中国测试》2022,(11):74-77
为建立一种区分检验烟盒外包装薄膜的方法,采用最新的差分拉曼光谱技术对41个不同品牌、不同系列的烟盒外包装薄膜进行检验研究,利用差分技术和BP神经网络技术、差分拉曼解调和去噪算法预处理谱图。通过结合传统解析谱图和化学计量学方法,可实现区分不同品牌、不同系列的烟用外包装薄膜样本的目的。研究表明:该方法操作简便、无损检材且科学可靠,能为公安机关实际办案提供帮助。  相似文献   

19.
界面损伤对颗粒增强复合材料弹性性能的影响   总被引:3,自引:1,他引:2       下载免费PDF全文
应用细观力学理论研究颗粒增强复合材料界面损伤问题, 分析颗粒界面局部开裂与均匀开裂同时存在时材料弹性性能的改变, 讨论损伤颗粒形状对材料有效弹性模量的影响。所有分析结果均以显式给出, 以便于研究者参考及工程应用。   相似文献   

20.
经阳极氧化的炭纤维丝束用水性聚氨酯进行上浆,考察上浆剂对炭纤维增强聚氨酯复合材料界面性能的影响,并结合元素分析、官能团分析、热重分析和示差扫描热分析进行机理研究。结果显示,上浆剂可以显著提高复合材料界面性能。层剪强度从氧化后的39.5 MPa提升到上浆后的46.4 MPa,提升17.5%。上浆的炭纤维经170°C热处理后层剪强度进一步提高到50.8 MPa。这归因于上浆剂与炭纤维表面的含氧官能团进行反应形成化学键,而上浆剂与基体以氢键相互作用。经进一步热处理后,上浆剂的封端剂脱除,释放出异氰酸酯与基体中的氨基甲酸酯反应生成尿基甲酸盐。因此,此水性聚氨酯上浆剂提高了炭纤维增强聚氨酯复合材料的界面性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号