首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 664 毫秒
1.
This paper presents an experimental study on square tubes made from a rate insensitive material under static and impact loading. Rate insensitivity of the base material (Cu–Zn alloy) is confirmed by static and dynamic tests on small samples cut from the tubes. A direct impact large scale Hopkinson bar (80 mm diameter, 10 m length) system is used to perform tube crushing tests. A two-point measurement method is applied to extend measuring duration of the pressure bar, which is usually limited by its length. The proposed method permits to monitor the whole tube crushing process.Static and impact tests (7–15 m/s) on these square tubes reveal that there is a significant increase under impact loading of both initial and successive peak loads with respect to quasi-static loading. Such a study is useful for the understanding of strength enhancement under impact loading observed for cellular materials such as honeycombs.  相似文献   

2.
Mechanical response of textile-reinforced aerated concrete sandwich panels was investigated using an instrumented three-point bending experiment under static and low-velocity dynamic loading. Two types of aerated concrete: autoclaved aerated concrete (AAC) and polymeric Fiber-Reinforced Aerated Concrete (FRAC) were used as the core material. Skin layer consisted of two layers of Alkali Resistant Glass (ARG) textiles and a cementitious binder. Performance of ductile skin-brittle core (TRC–AAC) and ductile skin-ductile core (TRC–FRAC) composites was evaluated in terms of flexural stiffness, strength, and energy absorption capacity. The effect of impact energy on the mechanical properties was measured at various drop heights on two different cross-sections using energy levels up to 40 J and intermediate strain rates up to 20 s 1. The externally bonded textile layers significantly improved the mechanical properties of light-weight low-strength aerated concrete core under both loading modes. Dynamic flexural strength was greater than the static flexural strength by as much as 4 times. For specimens with larger cross-sections, unreinforced-autoclaved AAC core had a 15% higher apparent flexural capacity. With 0.5% volume of polypropylene fibers in the core, the flexural toughness however increased by 25%. Cracking mechanisms were studied using high speed image acquisition and digital image correlation (DIC) technique.  相似文献   

3.
Micropowder injection molding (μPIM) is a new technology that has potential in the mass production of microcomponents. A bulk material of nanoparticles possesses completely different properties from those of large-sized particles. The main objective of this study is to study the effects of nano-sized powder addition on the μPIM process of powder-polymer mixtures for the fabrication of miniature parts. The binder systems consist of polyethylene glycol (PEG), polymethyl methacrylate (PMMA), and stearic acid (SA) with different powder loading blended with powders. The results indicate that increasing the nanopowder content to 30 wt.% increased the powder loading and decreased the injection and sintering temperatures. The sintered parts had densities of 96% of the theoretical value. High physical and mechanical properties of the sintered specimen were achieved with the 30 wt.% nano-sized powder sintered at 1200 °C at a heating rate of 5 °C/min under vacuum atmosphere. A significant reduction of the surface roughness of the sintered parts using the nano–microhybrid powder (Sa = 0.365 μm) was observed compared with the sintered parts with only micropowder (Sa = 1.002 μm). Using nanopowders, the hardness also increased from 182 HV to 221 HV with a linear shrinkage of approximately 9%, which is less than that of the micropowders (18%).  相似文献   

4.
The present study focuses on the effect of size-scale combination of silica on the mechanical and dynamic mechanical properties of acrylate based (50% Bis-GMA and 50% TEGDMA by weight) composites with an aim to overcome the conventional problem of high-volume fraction filling of acrylate based composites, typically used in restorative dentistry. Two classes of light-cured composites based on the size-scale combination of silica (7 nm + 2 μm; 14 nm + 2 μm) as the filler were prepared. FTIR spectroscopy revealed functionality and interactions whereas morphological investigations concerning the state of distribution and dispersion of nano- and micro-silica has been carried out by SEM–EDX Si-dot mapping. The dynamic mechanical properties, compressive, flexural and diametral tensile strengths were characterized. Micromechanical analysis of viscoelastic storage moduli following Kerner composite model has revealed an enhancement in the reinforcement efficiency of the nanohybrid composites based on the filler size-scale combination of 14 nm + 2 μm with 10 wt.% nanofiller loading. The compressive strength of the micro-filled composite (with 2 μm silica only) was found to remain comparable to that of the nanohybrid with 5 wt.% of 7 nm silica and 10 wt.% of 14 nm silica filled composites. Diametral tensile strength has been observed to be influenced by the size-scale combination and extent of nanofiller loading. The effective volume fractions in the composites validating the experimentally determined DTS were calculated following Nicolais–Narkis model. Our study demonstrates the conceptual feasibility of exploring the optimization of size-scale combinations of filler for enhancement in reinforcement efficiency by manipulating the volume fraction of filler induced immobilized polymer chains by resorting to the principle of micromechanics.  相似文献   

5.
The stretch formability of a low carbon steel processed by friction stir processing (FSP) was studied under biaxial loading condition applied by a miniaturized Erichsen test. One-pass FSP decreased the ferritic grain size in the processed zone from 25 μm to about 3 μm, which also caused a remarkable increase in strength values without considerable decrease in formability under uniaxial loading. A coarse-grained (CG) sample before FSP reflected a moderate formability with an Erichsen index (EI) of 2.73 mm. FSP slightly decreased the stretch formability of the sample to 2.66 mm. However, FSP increased the required punch load (FEI) due to the increased strength by grain refinement. FSP reduced considerably the roughness of the free surface of the biaxial stretched samples with reduced orange peel effect. The average roughness value (Ra) decreased from 2.90 in the CG sample down to about 0.65 μm in fine-grained (FG) sample after FSP. It can be concluded that the FG microstructure in low carbon steels sheets or plates used generally in shipbuilding provides a good balance between strength and formability.  相似文献   

6.
The effect of temperature on the low velocity impact resistance properties and on the post-impact flexural performance of CFRP laminates were studied. With this aim, 150 × 75 mm cross-ply carbon fibre/epoxy laminates with a [0/90/90/0]2s layup, therefore with a total of sixteen layers, were impacted at ambient temperature (30 °C) and at elevated temperatures (55, 75 and 90 °C) at a velocity of 2 m/s using a drop weight impact tower. This was followed by flexural tests carried out at ambient temperature using a three-point bending rig. Damage assessment of impact and post-impact behaviour were carried out using ultrasonic C-scan and microfocus X-ray computed tomography (μCT). Interrupted flexural tests using μCT allowed delamination propagation to be observed. In general, lower projected damage was observed at elevated temperatures, which resulted also in a possible hindrance to delamination and shear cracks propagation during impact and in a greater amount of retained flexural strength after impact.  相似文献   

7.
Basalt fiber (BF) filled high density polyethylene (HDPE) and co-extruded wood plastic composites (WPCs) with BF/HDPE composite shell were successfully prepared and their mechanical, morphological and thermal properties characterized. The BFs had an average diameter of 7 μm with an organic surfactant surface coating, which was thermally decomposed at about 210 °C. Incorporating BFs into HDPE matrix substantially enhanced flexural, tensile and dynamic modulus without causing a noticeable decrease in the tensile and impact strength of the composites. Micromechanical modeling of tensile properties for the BF/HDPE composites showed a good fit of the selected models to the experimental data. Compared to neat HDPE, BF/HDPE composites had reduced linear coefficient of thermal expansion (LCTE) values. The use of the pure HDPE and BF/HDPE layers over a WPC core greatly improved impact strength of core–shell structured composites. However, the relatively less-stiff HDPE shell with large LCTE values decreased the overall composite modulus and thermal stability. Both flexural and thermal expansion properties were enhanced with BF reinforced HDPE shells, leading to well-balanced properties of core–shell structured material. Cone calorimetry analysis indicated that flammability performance of core–shell structured composites was improved as the BF content increased in the shell layer.  相似文献   

8.
《Composites Part A》2007,38(7):1675-1682
This research explores the potential of using exfoliated graphite nanoplatelets, xGnP, (graphene sheets ∼10 nm thickness, ∼1 μm diameter), as reinforcement in polypropylene, PP. xGnP–PP nanocomposites were fabricated by melt mixing and injection molding. The feasibility of using xGnP–PP nanocomposites was investigated by evaluating the flexural strength, modulus and impact strength and studying the morphology of this system as a function of xGnP loading and aspect ratio and by comparing the xGnP–PP with composites made with commercial available reinforcements such as carbon fibers, carbon black and clays. It is concluded that the smaller aspect ratio xGnP has the strongest impact on the mechanical properties of PP, at loadings up to 5 vol.%, compared to the other reinforcements used, which reflects the compatibility between the exfoliated graphite nanoplatelets and the PP matrix and the exceptional mechanical properties of xGnP, similar to crystalline graphite.  相似文献   

9.
Surface treatments using bio-technology are valuable and fascinating in the sense that such treatments are natural and yield good biocompatibility. Calcium oxalate whiskers for biomedical applications were successfully synthesized on the CoCrMo alloy surfaces implanted in Aloe leaves which consist of many active bio-chemical elements. The effect of surface wettability and surface morphology on the formation of whiskers was investigated using four differently treated CoCrMo surfaces: (i) smoothly polished surface, (ii) electrochemical etched surface, (ii) textured surface with dimples, and (iv) parallel orientated-grooved surface. Results showed that the formed whiskers had a length ranging between 100 μm and 600 μm, and a diameter in the range of 2 μm to 5 μm. Electrochemically etched surfaces had better wettability and were favorably for growing whiskers. Surface morphology with (i) dimple textures or (ii) parallel grooves facilitated the effective control of the size and amount of the grown whiskers.  相似文献   

10.
For vitrified bond cubic boron nitride (CBN) grinding wheel, introduced pores play a very important role for its mechanical properties and performance. In this paper, granulated sugar was used as pore former of the vitrified bond in CBN grinding wheel. The effects of content and particle size of the granulated sugar on the porosity and the flexural strength of the sintered vitrified bond CBN wheel samples have been investigated. It was found that the porosity of the vitrified bond CBN wheel is positively correlated with the content of the granulated sugar. The smaller and more irregular shaped pores are uniformly distributed in the bond when the content of granulated sugar is between 1 and 3 wt.%. Larger and more non-uniform pores and pore channels appear as the content of granulated sugar is increased from 5 to 7 wt.%. The flexural strength of the vitrified bond CBN wheel specimens decreases with an increase in pore former’s content and the porosity. With the increase of pore former’s particle size at the content of 3 wt.%, the flexural strength reaches to a peak value of 49 MPa with average particle size of granulated sugar is 250 μm. When the average size of granulated sugar is from 100 to 125 μm, the pores’ size is similar with the size of pore former and distributed homogeneously. The larger granulated sugar with the size from 160 to 500 μm can introduce different size of pores which could be smaller or larger than the size of pore former.  相似文献   

11.
This paper describes the mechanical response of lightweight mortars subjected to impact loading in flexure. Expanded perlite aggregate with a bulk density of 64 kg/m3 was used at between 0 and 8 times by volume of Portland cement to yield a range of mortars with density between 1000 and 2000 kg/m3. Some specimens were reinforced with a polypropylene microfibre at 0.1% volume fraction and the dynamic fracture toughness was evaluated by means of an instrumented drop-weight impact system. Companion tests were carried out in compression under quasi-static loading to standardise the mixes. The compressive strength and elastic modulus scale as the cube of the relative density, defined as the ratio of the density of the mortar to that of Portland cement paste. Whereas the flexural strength and fracture toughness were both linearly proportional to the relative density of the mortar under quasi-static loading, there was an increase in their sensitivity to relative density at higher loading rates. Contrary to what is seen in regular concrete, fibre reinforcement led to an increase in the stress-rate sensitivity of flexural strength in lightweight mortars. For the same impact velocity, the stress-rates experienced by a specimen was strongly influenced by its density. While the stress-rate sensitivity of flexural strength dropped with a decrease in the mix density, that of the fracture toughness was consistently higher for the lighter mixes.  相似文献   

12.
Two K2O–MgO–Al2O3–SiO2 based geopolymer gels with bulk chemical composition corresponding to cordierite (Co) and 1:1 mullite-cordierite (MuCo) were successfully transformed to crystalline bonds in high temperature service of cold-setting made refractory concretes. Kyanite aggregates changed the flexural strength of the gels from 11 to 28 MPa due to the development of good adhesive bonds. Under thermal cycles, up to 1250 °C, the cumulative pore volume remained at 0.09 mL/g, as from the absence of important densification/shrinkage. However, the behavior of the cumulative pore volume curves changed from that of a matrix with a wide range of distribution of pore sizes to that, of matrix, consisting of relatively coarse grains. The latter exhibits a rise at 10 μm as void spaces created around the contact points among the coarse kyanite grains and that at 0.054 μm as pores within the crystalline phases (cordierite, kalsilite, leucite, mullite, enstatite) formed. The microstructural observations confirmed the transformation of gel pores (size around 0.01 μm) to interparticle and intergranular pores due to the crystallization. The flexural strength of refractory concretes increased from 28 MPa to 40 MPa in agreement with the increase in the elastic modulus from 9 to 30 GPa. The crystallization was enhanced by the MgO content (being important in Co compared to MuCo) and the kyanite concentration as particles of kyanite effectively acted as phase separation and nucleation sites.  相似文献   

13.
PLA/hemp co-wrapped hybrid yarns were produced by wrapping PLA filaments around a core composed of a 400 twists/m and 25 tex hemp yarn (Cannabis sativa L) and 18 tex PLA filaments. The hemp content varied between 10 and 45 mass%, and the PLA wrapping density around the core was 150 and 250 turns/m. Composites were fabricated by compression moulding of 0/90 bidirectional prepregs, and characterised regarding porosity, mechanical strength and thermal properties by dynamic mechanical thermal analysis (DMTA) and differential scanning calorimetry (DSC). Mechanical tests showed that the tensile and flexural strengths of the composites markedly increased with the fibre content, reaching 59.3 and 124.2 MPa when reinforced with 45 mass% fibre, which is approximately 2 and 3.3 times higher compared to neat PLA. Impact strength of the composites decreased initially up to 10 mass% fibre; while higher fibre loading (up to 45 mass%) caused an increase in impact strength up to 26.3 kJ/m2, an improvement of about 2 times higher compared to neat PLA. The composites made from the hybrid yarn with a wrapping density of 250 turns/m showed improvements in mechanical properties, due to the lower porosity. The fractured surfaces were investigated by scanning electron microscopy to study the fibre/matrix interface.  相似文献   

14.
Micro-concrete (MC) can be defined as a high performance cement-based material proportioned with micro-aggregates whose particle sizes range from about 0.5 mm to less than 1 μm. The incorporation of micro-aggregates improve the particle packing density of the cementitious system, by this way the rheological and mechanical properties of MCs are enhanced.An experimental program has been conducted to investigate the effect of three types of micro-aggregates presenting three different particle size distributions (PSDs) on the admixture requirement, compressive and flexural strength development of MC. In order to compare the PSD of micro-aggregates and to find a correlation between fineness and admixture requirement, the concept of “Fineness Index” was described. Additionally, particle shape and surface morphology of micro-aggregates were analysed by using SEM images. Some conventional commands of image analysis were employed. Possible quantification methods of shape characteristics and surface roughness of micro-aggregates were proposed. The results showed that, in addition to PSD, particle shape and surface morphology of micro-aggregates should also be quantitatively determined. Success of characterization significantly depends on preparation of appropriate and representative SEM images and proper selection of methodology of analysis.  相似文献   

15.
Fiber-Reinforced Aerated Concrete (FRAC) is a novel lightweight aerated concrete that includes internal reinforcement with short polymeric fibers. The autoclaving process is eliminated from the production of FRAC and curing is performed at room temperature. Several instrumented experiments were performed to characterize FRAC blocks for their physical and mechanical properties. This work includes the study of pore-structure at micro-scale and macro-scale; the variations of density and compressive strength within a block; compressive, flexural and tensile properties; impact resistance; and thermal conductivity. Furthermore, the effect of fiber content on the mechanical characteristics of FRAC was studied at three volume fractions and compared to plain Autoclaved Aerated Concrete (AAC). The instrumented experimental results for the highest fiber content FRAC indicated compressive strength of approximately 3 MPa, flexural strength of 0.56 MPa, flexural toughness of more than 25 N m, and thermal conductivity of 0.15 W/K m.  相似文献   

16.
Numerous studies have observed that the fatigue strength of improved welds increases with material yield strength. This paper provides a comprehensive evaluation of published data for high frequency mechanical impact treated welds. In total, 228 experimental results for three weld geometries subject to R = 0.1 axial loading have been reviewed. A design recommendation including one fatigue class increase in strength (about 12.5%) for every 200 MPa increase in static yield strength is proposed and are shown to be conservative with respect to all available data. Special cautions are given for high R-ratio or variable amplitude fatigue and potential alternate failure locations.  相似文献   

17.
The fatigue life of metallic aircraft structural components can be significantly reduced by environmentally induced corrosion. As part of a NAVAIR High Strength Steel Corrosion–Fatigue Assessment Program, methods were studied to predict the impact that corrosion-induced surface roughness has on the fatigue life of high-strength steel aircraft components. In order to adequately capture the corrosion damage features that cause fatigue cracking, a representative set of well-characterized corrosion–fatigue test results were generated to be used for model development. The test specimens fabricated for this program consisted of bare, unnotched AF1410 steel flat plates with a 25.4 mm diameter corrosion patch on one side. Two sets of test specimens were fabricated and tested, with one set abrasive blasted after heat treatment, and the other set hand polished after heat treatment. A method of growing corrosion in the laboratory was developed that consisted of filter paper soaked in a 3.5% NaCl solution and placed at the center of the test plate gage section, with a voltage applied across the filter paper to accelerate corrosion growth. High-resolution 3D surface topography data was collected from the corroded region on each test plate prior to fatigue testing using a commercial white-light interference microscope. Constant-amplitude fatigue tests were performed on corroded and uncorroded test plates at several different stress levels, for three different corrosion exposure levels. Post-test fractographic analysis of the corroded specimens indicate that all of the critical cracks originated from small corrosion notches on the order of 10–200 μm in width, 10–120 μm in height and 2–100 μm in depth. These notches were not considered to be pits in that the depth dimension was less than the surface dimensions. The repeatability of the fatigue initiating mechanism for corrosion damaged surfaces in this material indicates that it should be possible to develop a single modeling approach that reasonably captures the effects of corrosion notches in reducing fatigue life.  相似文献   

18.
Porous titanium-hydroxyapatite (Ti/HA) composite is a developed composite material suitable for bio-medical applications. Powder injection molding (PIM) with space holder method is used to produce porous Ti/HA with mechanical properties, similar to human bone, and pores helps to initiate tissue growth. However, the differences in physical and mechanical properties of these composites are the main challenges during debinding and sintering. Therefore, the main objective is to determine effects of binder systems and processing parameters on formability of Ti/HA composite. In PIM, a binder system is necessary to produce green and ultimately sintered part. There are two binder systems and variation of sintering temperature has been used. Results revealed that Polyethylene glycol (PEG)-based binder system is applicable with NaCl space holder and optimum sintering parameters, including temperature, heating rate, and holding time of 1300 °C, 10 °C/min, and 5 h, respectively. The fabricated porous Ti/HA exhibits average porosity, pore size distribution, compressive strength, and roughness values of 55%, 60 μm to 170 μm, 370 MPa, and 0.323 μm, respectively. FESEM results showed that the pores are interconnected. It may be an appropriate material for future bio-medical applications.  相似文献   

19.
For the fabrication of bulk near-net-shape shape memory alloys and porous metallic biomaterials, consolidation of Ti–Ni–Mo alloy powders is more useful than that of elemental powders of Ti, Ni and Mo. Ti50Ni49.9Mo0.1 shape memory alloy powders were prepared by gas atomization, and transformation temperatures and microstructures of those powders were investigated as a function of powder size. XRD analysis showed that the B2–R–B19 martensitic transformation occurred in powders smaller than 150 μm. According to DSC analysis of the as-atomized powders, the B2–R transformation temperature (TR) of the 25–50 μm powders was 18.4 °C. The TR decreased with increasing powder size, however, the difference in TR between 25–50 μm powders and 100–150 μm powders is only 1 °C. Evaluation of powder microstructures was based on SEM examination of the surface and the polished and etched powder cross sections and the typical images of the rapidly solidified powders showed cellular morphology. Porous cylindrical foams of 10 mm diameter and 1.5 mm length were fabricated by spark plasma sintering (SPS) at 800 °C and 5 MPa. Finally these porous TiNi alloy samples are heat-treated for 1 h at 850 °C, and then quenched in ice water. The bulk samples have 23% porosity and 4.6 g/cm3 density and their TR is 17.8 °C.  相似文献   

20.
This study investigates characteristics of foreign-object damage in plain-woven SiC/SiC composites after thermal loading. High-speed impact tests were conducted on virgin specimens, thermally exposed specimens, and thermally shocked specimens, in which the maximum temperature during thermal loading was 600 °C or 1000 °C. An oxide layer was generated on the specimen surface by thermal loading at 1000 °C. Damaged areas on the front and back surfaces induced by particle impact were independent of thermal loading. However, in specimens thermally loaded at 1000 °C, brittle failure, i.e. cone cracking without fiber pull-out, occurred due to oxidation of the fiber/matrix interfaces, and the ballistic limit velocity significantly decreased. Finally, the ballistic limit is predicted using static strength properties, and the effect of thermal loading on impact resistance is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号