首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

The deformation behaviour of the new high performance polymer fibres, poly(p-phenylene benzobisoxazole) (PBO) and polypyridobisimidazole (PIPD) and their adhesion to an epoxy composite matrix have been investigated. Both fibres give well defined Raman spectra, and the deformation micromechanics of PBO and PIPD single fibres and composites were studied from stress induced Raman band shifts. Single fibre stress-strain curves were determined in both tension and compression, thus providing an estimate of the compressive strength of these fibres. It was found that the PIPD fibre has a higher compressive strength (~1 GPa) than PBO (~0·3 GPa) and other high performance polymer fibres, because hydrogen bond formation is possible between PIPD molecules. It has been shown that when PBO and PIPD fibres are incorporated into an epoxy resin matrix, the resulting composites show very different interfacial failure mechanisms. The fibre strain distribution in the PBO-epoxy composites follows that predicted by the full bonding, shear lag model at low matrix strains, but deviations occur at higher matrix strains due to debonding at the fibre/matrix interface. For PIPD-epoxy composites, however, no debonding was observed before fibre fragmentation, indicating better adhesion than for PBO as a result of reactive groups on the PIPD fibre surface.  相似文献   

2.
Hybrid composites prepared by the incorporation of two or more different types of fibres into a single polymer matrix deserve much attention. This method of hybridisation of composites offers a profitable procedure for the fabrication of products while the resulting materials are noted for their high specific strength, modulus and thermal stability. The influence of the relative composition of short sisal/glass fibres, their length and distribution on the tensile properties of short sisal/glass intimately mixed polyethylene composites (SGRP) was examined. Different compositions of sisal and glass such as 70/30, 50/50 and 30/70 have been prepared with varying fibre lengths in the range of 1–10 mm. Emphasis has also been given to the variation of fibre–matrix adhesion with several fibre chemical modifications. Chemical surface modifications such as alkali, acetic anhydride, stearic acid, permanganate, maleic anhydride, silane and peroxides given to the fibres and matrix were found to be successful in improving the interfacial adhesion and compatibility between the fibre and matrix. The nature and extent of chemical modifications were analysed by infrared spectroscopy while improvement in fibre–matrix adhesion was checked by studying the fractography of composite samples using a scanning electron microscope. Assessment of water retention values has been found to be a successful tool to characterize the surface of the stearic acid modified fibres. It was found that the extent of improvement in tensile properties of SGRP varied with respect to the nature of chemical modifications between fibre and matrix. Improved mechanical anchoring and physical and chemical bonding between fibre and polyethylene matrix are supposed to be the reasons for superior tensile strength and Young's modulus in treated composites. Several secondary reasons such as high degree of fibre dispersion and reduced hydrophilicity in chemically modified fibres also are believed to play a role. Among the various chemical modifications, the best tensile strength and modulus was exhibited by the SGRP with benzoyl peroxide treated fibres. This is attributed to the peroxide‐initiated grafting of polyethylene on to the fibres. Copyright © 2004 Society of Chemical Industry  相似文献   

3.
Organosilanes are often used in commercial sizings for glass fibres to provide wettability with the resin and promote strong interfacial adhesion to the matrix in a fibre reinforced polymer composite. The silane treatment is introduced as part of a complex deposition from an aqueous emulsion immediately at the spinaret and determines the optimum properties of the cured composite. To understand the interaction of organosilanes contained in sizings for glass surfaces, XPS was used to investigate the adsorption of γ-aminopropyltriethoxysilane (APS) from a simple sizing system containing a polyurethane (PU) film former. It has been found that both APS and the sizing (containing APS and PU) deposits on E-glass fibre surfaces contained components of differing hydrolytic stability. The differences observed in the AFM images of APS coated E-glass fibres before and after water extraction also confirmed that the APS deposit contained components with different water solubility.  相似文献   

4.
A.G. Odeshi  H. Mucha 《Carbon》2006,44(10):1994-2001
A porous two-dimensional C/C composite was produced via the polymer pyrolysis route using phenolic resin as the matrix precursor and polyacrilonitrile- (PAN-) or pitch-based carbon fibres as reinforcement. The resulting C/C composites were then densified using a modified polysilane followed by pyrolysis to convert the polymer into silicon carbide, sealing the pores in the C/C composite. Aiming to increase the ceramic yield of the infiltrated polysilane and to reduce its volumetric shrinkage during pyrolysis the polymer’s curing behaviour was modified by catalytic addition of 0.1% dicobaltoctacarbonyl [Co2(CO)8]. The densification procedure is very efficient in sealing cracks in the C/C composite with SiC. The obtained carbon fibre reinforced C/SiC dual matrix composites were subjected to flexural tests and dynamic mechanical analysis. The flexural and visco-elastic properties of the composite are dominated by the strength of the fibre/matrix interface rather than by the fibre strength or modulus. A correlation between the mechanical loss factor (tan δ) and the fracture behaviour of the composite is suggested.  相似文献   

5.
The compatibility of matrix and fibre properties is one of the key parameters in the successful design of fibre reinforced cementitious composites. In order to achieve the desired performance, the properties of each constituent of composite should be properly configured. The aim of this study was to investigate the performance of two polymer based micro-fibres (polypropylene and polyvinyl alcohol) in different matrices (high strength and comparatively low strength with fly ash incorporation) which were designed to contain considerably high amounts of fibres (1% by volume) while maintaining their self-compactability. The fresh state thixotropic behaviour of fibre reinforced matrices was minimised by proper adjustment of water/cementitious material ratio and admixture dosage. The mechanical properties (first crack strength and displacement, flexural strength and relative toughness) of prismatic composite samples were compared by three point flexural loading test. The typical behaviours of selected composites and collapse mechanisms of PP and PVA fibres in these matrices were characterised by microstructural studies. It was concluded that, a high strength matrix with a high strength fibre give the best performance from the view point of flexural strength and toughness performance. However, incorporation of fly ash did not cause a significant reduction in composite performance possibly due to its enhancing effect on matrix–fibre interface adhesion. The possibilities and suggestions to further improve the performance of the composites were also discussed.  相似文献   

6.
Organosilanes are often used in commercial sizings for glass fibres to provide wettability with the resin and promote strong interfacial adhesion to the matrix in a fibre reinforced polymer composite. The silane treatment is introduced as part of a complex deposition from an aqueous emulsion immediately at the spinaret and determines the optimum properties of the cured composite. To understand the interaction of organosilanes contained in sizings for glass surfaces, XPS was used to investigate the adsorption of γ-aminopropyltriethoxysilane (APS) from a simple sizing system containing a polyurethane (PU) film former. It has been found that both APS and the sizing (containing APS and PU) deposits on E-glass fibre surfaces contained components of differing hydrolytic stability. The differences observed in the AFM images of APS coated E-glass fibres before and after water extraction also confirmed that the APS deposit contained components with different water solubility.  相似文献   

7.
Abstract

Polarised light microscopy has been used to investigate the influence of stress level, interfibre spacing, and fibre–matrix adhesion on the fatigue micromechanisms in carbon–epoxy model composites consisting of a planar array of five intermediate modulus carbon fibres. It was found that an increase in fatigue stress results in an increase in the number of fibre breaks, a more coordinated fibre fracture pattern as a result of fibre–fibre interaction, and extensive interfacial damage. In addition, it was shown that a smaller interfibre spacing results in a higher level of fibre–fibre interaction. Finally, in the case of surface treated carbon fibres (good fibre–matrix adhesion), a more coordinated fibre failure pattern was observed owing to stronger fibre–fibre interaction, whereas in the case of untreated carbon fibres (poor fibre–matrix adhesion), extensive debonding was observed which resulted in a more random fibre failure pattern. Finally, the experimental results were validated by means of a three-dimensional finite element analysis.  相似文献   

8.
Previous work has shown that, for a series of experimental autoclaved aerated concretes with porosities ranging from 0.48 to 0.78, compressive strength is linearly related to the solid/pore volume ratio determined by helium pycnometry. In the work described here, this type of relationship has been applied to experimental data from hydrated Portland cement specimens, prepared using initial water/cement ratios of 0.35 to 0.50 and curing times of 2 to 28 days, with porosities ranging from 0.26 to 0.45. The relationship was found to provide a good fit using data obtained both by varying the water/cement ratio at constant curing times and by varying the curing time at constant water/cement ratios.  相似文献   

9.
Nextel 610 fibre-reinforced mullite-based matrix fabricated by Dornier Forschung was characterised at DLR Institute of Materials Research. The material was produced by the polymer route after coating the fibres with a 0.1 μm thick carbon layer. The composite was manufactured by infiltrating the fibres with a slurry containing a diluted polymer and mullite powder, curing in an autoclave and subsequently heat treating and pyrolysis of the polymer. A final heat treatment in air is performed to remove the carbon coating and to reduce the residual stresses. A (0/90/0/90/0/90)s-laminate was produced with an average fibre volume fraction of 45.6% and a porosity of 15.9%. Dog-bone-type tensile specimens with a width of 10 mm were cut from the plate by water jet and tested at temperatures up to 1200°C in air. The tensile strength at room temperature measured 177.4 MPa and linearly decreased to 145.2 MPa at a temperature of 800°C. A stronger decrease occurred at 1000 and 1200°C. In contradiction to ceramic matrix composites manufactured by the CVI-route the stress–strain behaviour is nearly linear up to failure. The modulus of the composite (at room temperature 108.8 GPa) is analysed on the basis of the expected moduli of the fibres and the mullite matrix. It can be concluded that the contribution of the matrix to the modulus of the composite is low, caused by porosity and components other than mullite. The intralaminar shear strength at room temperature measured 36 MPa. This value reflecting shear transfer capability of fibre to matrix limits the amount of fibre pull-out.  相似文献   

10.
Fibre optic (FO) sensors are becoming increasingly popular for different applications in structural monitoring. Among their excellent properties, a strong interest for this type of sensors are represented by the possibility of embedding FOs inside composite components. In this case, one of the factors that significantly influence the efficiency of the whole Structural Health Monitoring (SHM) system is the interfacial adhesion between FO sensors and the host material. The main objective of this work is to investigate the interfacial adhesion between embedded fibre optic sensors and epoxy matrix to find the best type of optical fibre to be used in epoxy matrices to produce smart composites. Four types of optical fibres with different diameters and coatings (i.e. polyimide, polyacrylate and ormoceramic) were used. Pull-out tests were carried out and different methods were used to obtain the composite/optical fibre interfacial properties. Finally, an optical microscopy and Scanning Electron Microscopy (SEM) analysis were performed to characterize the fibre/matrix interfaces. It was found that the optical fibre that presented the highest energy required for interface rupture and, consequently, less invasiveness to the host material was the ormoceramic fibre with the smallest diameter.  相似文献   

11.
The effect of basalt fibre sizing on the mechanical and interphase properties of fibre‐reinforced composites was studied. Two different chemical preparations of the fibre surface (PBT‐compliant and PP‐compliant) were used. The polymer matrix was prepared from polypropylene/poly(butylene terephthalate) (PP/PBT) immiscible polymer blend and the effect of different compatibilizers on the composite properties was evaluated. SEM hints at improved fibre adhesion to the polymer matrix when a PP‐compliant sizing is applied. SEM also reveals improved compatibilization effects when block copolymer instead of multiblock copolymer is used for the PP/PBT blend preparation. The pull‐out test was applied to quantitatively evaluate the interface adhesion between the fibres and matrices. It showed a high value of the interfacial shear strength between basalt fibres modified with PP‐compliant sizing and polymer blend compatibilized by block copolymer, thus confirming good adhesion. One possible explanation of such good mechanical properties can be related to the chemical interactions between functional groups, mainly maleic anhydride on basalt fibres and the polyolefin component (PP) of the polymer matrix. © 2017 Society of Chemical Industry  相似文献   

12.
The paper presents chloride diffusion characteristics of a steel fibre reinforced OPC-pfa concrete mix which was manufactured by replacing 26 per cent of ordinary Portland cement with pfa. Steel fibre reinforced marine mixes generally require high cement contents of the order of 590 kg/m3 and use of pfa results in equivalent practical mixes of a more reasonable cement content. A mix of proportions by weight of 0.26 (pfa) : 0.74 (OPC) : 1.51 : 0.84 with a water/(OPC+pfa) ratio of 0.4 was reinforced with three types of steel fibres. Uncracked and pre-cracked prism specimens were cured under simulated splash zone exposure in the laboratory and at Aberdeen beach, after initial dry curing in the laboratory.The results show that the period of initial dry curing has an insignificant effect on Cl diffusion in concrete. Cl concentrations are higher in the OPC-pfa mix in comparison with the marine mix based only on OPC. Most of the Cl penetration occrs within 150 marine cycles (110 days) of exposure and Cl concentrations increase significantly in the vicinity of wider cracks.  相似文献   

13.
Abstract

Unidirectional isora fibre reinforced epoxy composites were prepared by compression moulding. Isora is a natural bast fibre separated from Helicteres isora plant by retting process. The effect of alkali treatment on the properties of the fibre was studied by scanning electron microscopy (SEM), IR, thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). Mechanical properties such as tensile strength, Young's modulus, flexural strength, flexural modulus and impact strength of the composites containing untreated and alkali treated fibres have been studied as a function of fibre loading. The optimum fibre loading for tensile properties of the untreated fibre composite was found to be 49% by volume and for flexural properties the loading was optimised at ~45%. Impact strength of the composite increased with increase in fibre loading and remained constant at a fibre loading of 54·5%. Alkali treated fibre composite showed improved thermal and mechanical properties compared to untreated fibre composite. From dynamic mechanical analysis (DMA) studies it was observed that the alkali treated fibre composites have higher E' and low tan δ maximum values compared to untreated fibre composites. From swelling studies in methyl ethyl ketone it was observed that the mole percentage of uptake of the solvent by the treated fibre composites is less than that by the untreated fibre composites. From these results it can be concluded that in composites containing alkalised fibres there is enhanced interfacial adhesion between the fibre and the matrix leading to better properties, compared to untreated fibre composites.  相似文献   

14.
Experimental results of dynamic‐mechanical measurements and differential scanning calorimetry are compared for a pure diglycidyl‐type epoxy/tetrafunctional aliphatic amine system and for a composite containing Kevlar fibres as reinforcement. The presence of fibres had marked effects on the curing reaction, depending on the curing temperature. At low curing temperatures, the extent of the reaction was lower for reinforced than for neat formulations. For higher curing temperatures, the thermograms shifted to shorter times as the fibre content increased. In dynamic curing, an increase in the fibre content affected the curing kinetics by slightly shifting the heat flow curves to higher temperatures, and resulted also in a reduction of the glass transition temperature of the matrix if postcuring was not applied. The dependence of the dynamic‐mechanical spectra of the samples on fibre content was satisfactorily modelled with the aid of Takayanagi's block model. An analysis of the main relaxation master curve shows that relaxation broadens as fibre content increases. © 1999 Society of Chemical Industry  相似文献   

15.
High-modulus carbon fibres from different precursors were submitted to an oxygen plasma-treatment under similar conditions. Single-fibre epoxy composites were prepared from them, and fragmentation tests were performed in order to characterise fibre-matrix interfacial adhesion. Raman spectroscopy has been used in the present work to map the strain along the fibre during tensile loading of the matrix. The strain distributions obtained agreed well with the prediction of analytical models used conventionally to describe load transfer at interfaces. Interfacial shear stress distributions were then obtained from these distributions according to the conventional force-balance concept. The interfacial shear strength (IFSS) and frictional shear stress (τf) values were calculated to quantify the degree of fibre-matrix adhesion. It was found that both parameters increased dramatically after the surface treatment, confirming the ability of cold plasma oxidation to improve the adhesion of carbon fibre to epoxy matrices. A dependence of the IFSS on the degree of surface order, as given by the structural order parameter ID/(ID+IG), calculated from the relative intensities of the D and G bands of Raman spectra, was found. This supports the role played by the graphitic structure in fibre-matrix adhesion.  相似文献   

16.
The performance of fibre-reinforced composites is strongly dependent on the nature and the strength of the fibre–matrix interface. Good interfacial bonding is required to ensure load transfer from matrix to reinforcing fibres. For rubber-reinforced composites, resorcinol formaldehyde latex (RFL) is known as a fibre surface coating which is able to provide good adhesion between rubber and fibres. But the performance of this substance in many cases can be largely affected due to exposure of the coated fibres to air and light. Moreover, most data available in the literature concern sulphur-cured elastomers only. In the present study, aramid fibres are investigated, because of their significantly higher modulus and strength compared to other commercial fibres. The adhesion of these fibres in compounds based on sulphur-cured natural rubber and peroxide-cured ethylene propylene diene rubber is investigated after being coated with RFL which is the most common adhesive coating for various sort of fibres, including aramid. The effect of physical interaction between fibres and rubbers is shown to be minor, and the effect of ageing of RFL on its ability to bond with rubbers using peroxide and sulphur curing systems are shown. As a result of ageing, ozone is able to decrease the double bonds of the latex part of the RFL, which negatively affects the RFL–rubber adhesion in sulphur-cured systems, while it has almost no effect in peroxide-cured systems. It is also discussed that, unlike in sulphur vulcanization in which bonding happens just between the latex in the RFL and rubber, peroxide is able to generate bonds between elastomer and the resin structure of the RFL-coating.  相似文献   

17.
SiC Nicalon fibre yarn was heat-treated at elevated temperature in a gas pressure furnace under CO atmosphere. Weak surface coating is essential for ceramic matrix composite (CMC) reinforcement. Therefore Nicalon SiC fibres were coated after CO heat treatment and then used for β-sialon ceramic reinforcement. The heat treated fibres were chopped about 1–2 mm, and β-sialon z = 1 starting powders were prepared with conventional ball milling. The sialon starting composition and the short fibres were mixed with the certain amount of water to obtain a plastically formable mud. This mud was unaxially cold-pressed to form green bodies and to decrease water content. The green bodies were hot pressed at elevated temperatures for half an hour to produce CMC samples. Vickers hardness test showed that heat-treated fibre reinforcement of β-sialon composites provided higher fracture toughness. Uniform fibre distribution, fibre coating, matrix densification and phase transformation were examined by SEM and XRD analysis.  相似文献   

18.
In this work banana fibre was chemically modified using various chemical agents. The surface energy of the fibre is an important parameter and one which governs the interaction of fibre with polymeric matrices. This paper describes the influence of various chemical treatments on the surface energy of the banana fibre investigated by contact angle measurements, spectroscopic analysis and surface morphology studies. The surface energy, work of adhesion, polarity, spreading coefficient, interfacial energy and interaction parameter were determined in the case of raw and chemically modified fibres. Chemical modification has been found to have a profound effect on the surface energy. The polar and dispersive components of the surface energy were also found to be dependent on the chemical treatment involved. The chemical modifications done in this work were: alkali treatment, silanation, benzoylation, formylation, potassium permanganate treatment and acetylation. Of all the modifications, the relative surface energy was found to be a maximum for alkali treated fibre and minimum for silanated fibre. Contact angle measurements were found to be an effective tool in predicting the possible interaction of the fibres with phenol formaldehyde matrix resin. Atomic force microscopy roughness analysis revealed a significant decrease in surface roughness for the chemically modified fibre. An increase both in fibre/matrix adhesion and interfacial shear strength has been observed for all surface modified fibres except for those modified by benzoylation and acetylation.  相似文献   

19.
When boron fibres are combined with an organic matrix, such as an epoxy resin, a high-performance composite structure is created. This study investigates the surface chemistry of plasma- and organosilane-treated boron fibres with the key aim to improving the adhesion properties between the boron fibre and the epoxy matrix. Optimisation of this interfacial region plays a critical role in influencing the mechanical behaviour of composite materials and has considerable industrial applications in the aerospace and manufacturing industries. The surface chemistry of a model boron surface and boron fibres was monitored using a combination of X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (TOF-SIMS). Initial investigation of the as-received fibres showed the presence of silicone contamination on the fibre surface, which would affect adhesion. Removal of this contaminant through solvent cleaning and plasma oxidation provided an ideal surface for attachment of the organosilane adhesion promoter. A model for the interaction of the organosilane with a boron surface is proposed. The pull-out strength of boron fibres, with different surface treatments, embedded in the epoxy resin was measured using a custom designed adhesiometer. Compared with as-received boron fibres, a 6-fold improvement in the apparent interfacial shear strength was achieved for the organosilane treated fibres. Optical microscopy was used to determine the failure mechanisms between the fibre and epoxy resin. Typically, as the surface treatment improved adhesion, the locus of failure changed from the boron–epoxy interface to failure within the epoxy and ultimately fibre breakage.  相似文献   

20.
In order to improve the interaction between the reinforcement and the matrix binder, fibre surface modification with micro-organisms is proposed. Enzymatic hydrolysis of surface macromolecules in aramid fibres leads to the formation of carboxyl groups. If an aqueous solution containing polyvinyl alcohol is the nutrient for the micro-organisms, hydrolysis is followed by the grafting of alcohol molecules onto the fibre surface through etherification. The fibre strength does not deteriorate, but the morphology and the chemical nature of the surface undergo alterations. As a result, wetting by molten thermoplastics is improved. The three-fibre method was used to investigate the adhesion between poly-p-amidobenzimidazole fibres (unmodified and modified) and thermoplastic matrices (polysulphone and polycarbonate). The biochemical treatment almost doubled the bond strength. Examination of the modified fibres, separated from the matrices, by scanning electron microscopy indicated the presence of a diffuse interphase between the fibre and the matrix. In the case of untreated fibres, the adhesional contact failed through interfacial shear; however, with modified fibres both were observed: interfacial shear and cohesive failure in the fibre. Thus, biochemical modification seems to be a simple method for fibre treatment to promote the compatibility of fibres and matrices, and to increase the composite strength.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号