首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
High strength circular concrete-filled steel tubular (CFST) slender beam-columns are frequently used in high-rise composite buildings because they possess higher strength and stiffness than normal strength ones. Most nonlinear inelastic methods of analysis for circular CFST slender beam-columns have not considered the effects of high strength materials and concrete confinement that significantly increases the strength and ductility of the concrete core. As a result, these methods produce computational solutions that deviate considerably from experimental results. This paper presents a new numerical model for predicting the nonlinear inelastic behavior of high strength circular CFST slender beam-columns under axial load and bending. The numerical model developed not only accounts for confinement effects on the concrete core and circular steel tubes but also incorporates initial geometric imperfections of beam-columns. Axial load-moment-curvature relationships obtained from the fiber element analysis of column cross-sections are utilized to determine the equilibrium states in the inelastic stability analysis of slender beam-columns. Computational algorithms are developed for determining the axial load-deflection and axial load-moment interaction curves for slender beam-columns. The numerical model is implemented in a computer program, which is shown to be an efficient and accurate simulation tool that can be used to investigate the fundamental behavior of high strength circular CFST slender beam-columns. The verification and applications of the numerical model are given in a companion paper.  相似文献   

2.
High strength thin-walled rectangular concrete-filled steel tubular (CFST) slender beam-columns under eccentric loading may undergo local and overall buckling. The modeling of the interaction between local and overall buckling is highly complicated. There is relatively little numerical study on the interaction buckling of high strength thin-walled rectangular CFST slender beam-columns. This paper presents a new numerical model for simulating the nonlinear inelastic behavior of uniaxially loaded high strength thin-walled rectangular CFST slender beam-columns with local buckling effects. The cross-section strengths of CFST beam-columns are modeled using the fiber element method. The progressive local and post-local buckling of thin steel tube walls under stress gradients is simulated by gradually redistributing normal stresses within the steel tube walls. New efficient Müller's method algorithms are developed to iterate the neutral axis depth in the cross-sectional analysis and to adjust the curvature at the columns ends in the axial load–moment interaction strength analysis of a slender beam-column to satisfy equilibrium conditions. Analysis procedures for determining the load–deflection and axial load–moment interaction curves for high strength thin-walled rectangular CFST slender beam-columns incorporating progressive local bucking and initial geometric imperfections are presented. The new numerical model developed is shown to be efficient for predicting axial load–deflection and axial load–moment interaction curves for high strength thin-walled rectangular CFST slender beam-columns. The verification of the numerical model and parametric studies is given in a companion paper.  相似文献   

3.
Experimental and numerical research on full-scale high strength thin-walled rectangular steel slender tubes filled with high strength concrete has not been reported in the literature. In a companion paper, a new numerical model was presented that simulates the nonlinear inelastic behavior of uniaxially loaded high strength thin-walled rectangular concrete-filled steel tubular (CFST) slender beam-columns with local buckling effects. The progressive local and post-local buckling of thin steel tube walls under stress gradients was incorporated in the numerical model. This paper presents the verification of the numerical model developed and its applications to the investigation into the fundamental behavior of high strength thin-walled CFST slender beam-columns. Experimental ultimate strengths and load-deflection responses of CFST slender beam-columns tested by independent researchers are used to verify the accuracy of the numerical model. The verified numerical model is then utilized to investigate the effects of local buckling, column slenderness ratio, depth-to-thickness ratio, loading eccentricity ratio, concrete compressive strengths and steel yield strengths on the behavior of high strength thin-walled CFST slender beam-columns. It is demonstrated that the numerical model is accurate and efficient for determining the behavior of high strength thin-walled CFST slender beam-columns with local buckling effects. Numerical results presented in this study are useful for the development of composite design codes for high strength thin-walled rectangular CFST slender beam-columns.  相似文献   

4.
There is relatively little experimental and numerical research on the fundamental behavior of high strength circular concrete-filled steel tubular (CFST) slender beam-columns. In a companion paper, a new numerical model for predicting the nonlinear inelastic behavior of high strength circular CFST slender beam-columns under axial load and bending was presented. The numerical model developed accounts for confinement effects on the strength and ductility of the concrete core and on circular steel tubes as well as initial geometric imperfections of beam-columns. This paper presents the verification of the numerical model and extensive parametric studies on the fundamental behavior of high strength circular CFST slender beam-columns. The ultimate strengths and axial load-deflection responses of circular CFST slender beam-columns under eccentric loading predicted by the numerical model are verified by corresponding experimental results. The computer program implementing the numerical model is used to investigate the fundamental behavior of high strength circular CFST slender beam-columns in terms of load-deflection responses, ultimate strengths, axial load-moment interaction diagrams, and strength increase due to concrete confinement. Parameters examined include column slenderness ratio, eccentricity ratio, concrete compressive strengths, steel yield strengths, steel ratio and concrete confinement. It is demonstrated that the numerical model developed is an efficient computer simulation and design tool for high strength circular CFST slender beam-columns. Benchmark numerical results presented in this paper are valuable in the development of composite design codes for high strength circular CFST slender beam-columns.  相似文献   

5.
This paper presents a performance-based analysis (PBA) technique based on fiber element formulations for the nonlinear analysis and performance-based design of thin-walled concrete-filled steel tubular (CFST) beam-columns with local buckling effects. Geometric imperfections, residual stresses and strain hardening of steel tubes and confined concrete models are considered in the PBA technique. Initial local buckling and effective strength/width formulas are incorporated in the PBA program to account for local buckling effects. The progressive local buckling of a thin-walled steel tube filled with concrete is simulated by gradually redistributing normal stresses within the steel tube walls. Performance indices are proposed to quantify the section, axial ductility and curvature ductility performance of thin-walled CFST beam-columns under axial load and biaxial bending. Efficient secant algorithms are developed to iterate the depth and orientation of the neutral axis in a thin-walled CFST beam-column section to satisfy equilibrium conditions. The analysis algorithms for thin-walled CFST beam-columns under axial load and uni- and biaxial bending are presented. The PBA program can efficiently generate axial load-strain curves, moment-curvature curves and axial load-moment strength interaction diagrams for thin-walled CFST beam-columns under biaxial loads. The proposed PBA technique allows the designer to analyze and design thin-walled CFST beam-columns made of compact or non-compact steel tubes with any strength grades and normal and high-strength concrete. The verification and applications of the PBA program are given in a companion paper.  相似文献   

6.
In composite construction, rectangular hollow steel tubular slender beam-columns are subjected to preloads arising from construction loads and permanent loads of the upper floors before infilling of the wet concrete. The behavior of biaxially loaded thin-walled rectangular concrete-filled steel tubular (CFST) slender beam-columns with preloads on the steel tubes has not been studied experimentally and numerically. In this paper, a fiber element model developed for CFST slender beam-columns with preload effects is briefly described and verified by existing experimental results of uniaxially loaded CFST columns with preload effects. The fiber element model is used to investigate the behavior of biaxially loaded rectangular CFST slender beam-columns accounting for the effects of preloads and local buckling. Parameters examined include local buckling, preload ratio, loading angle, depth-to-thickness ratio, column slenderness, loading eccentricity and steel yield strength. The results obtained indicate that the preloads on the steel tubes significantly reduce the stiffness and strength of CFST slender beam-columns with a maximum strength reduction of more than 15.8%. Based on the parametric studies, a design model is proposed for axially loaded rectangular CFST columns with preload effects. The fiber element and design models proposed allow for the structural designer to efficiently analyze and design CFST slender beam-columns subjected to preloads from the upper floors of a high-rise composite building during construction.  相似文献   

7.
This paper presents an experimental and analytical study of the behaviour of high-strength rectangular concrete-filled steel tubular (CFT) columns subjected to eccentric loading. Four slender and 16 stub CFT columns were tested to investigate their structural behaviour. The test parameters were material strengths (), cross-sectional aspect ratio (1.0-2.0), slenderness ratio (10 and 60) and load eccentricity ratio (e/H=0.10-0.42). Favourable ductility performance was observed for all specimens during the tests. Experimental failure loads are employed to calibrate the specifications in the design codes EC4, ACI and AISC. Results show that EC4 overestimates the failure loads of the specimens by 4%. ACI and AISC conservatively predict the failure loads by 14% and 24%, respectively. An analytical model is developed to predict the behaviour of high-strength rectangular CFT columns subjected to eccentric loading. Calibration of the model against the test results shows that it closely estimates the ultimate capacities of the columns by 3%.  相似文献   

8.
为了深入研究钢管高强混凝土轴压短柱破坏模式与破坏机理,提出适合钢管高强混凝土轴压短柱极限承载力计算方法,针对圆钢管高强混凝土轴压短柱大都发生剪切破坏这一典型现象,引入莫尔-库仑强度理论,从理论上分析其发生剪切破坏的原因和受力机理,并从剪切破坏的角度提出了钢管高强混凝土轴压短柱承载力计算方法。利用基于圆钢管高强混凝土轴压短柱试验研究和有限元分析回归得到的处于复杂应力场中的钢管纵向应力σv-纵向应变ε关系曲线和钢管横向应力σh-纵向应变ε关系曲线的数学表达式,得到了钢管高强混凝土轴压短柱承载力包络线的简化计算方法,简化计算曲线与试验曲线吻合良好,可用于分析钢管高强混凝土轴压短柱的受剪承载力。  相似文献   

9.
Double skin composite columns are formed from two steel skins filled with concrete in between. This new form of hybrid column has the potential to be used in many domains such as high-rise bridge piers and large diameter columns in high-rise buildings, etc. This paper describes a series of tests carried out on concrete-filled double skin steel tubular (CFDST) stub columns, beams and beam-columns. Both outer and inner tubes are cold-formed rectangular hollow sections (RHS). The failure modes, and load-deformation behaviour of CFDST specimens are compared with those of conventional concrete-filled steel tubular members and empty double skin tubular members. A theoretical model is developed in this paper for the CFDST stub columns, beams and beam-columns. Reasonably good agreement is observed between the predicted and tested curves. Simplified models are derived to predict the load-carrying capacities of the composite members.  相似文献   

10.
The availability of high strength steels and concrete leads to the use of thin steel plates in concrete-filled steel tubular beam-columns. However, the use of thin steel plates in composite beam-columns gives a rise to local buckling that would appreciably reduce the strength and ductility performance of the members. This paper studies the critical local and post-local buckling behavior of steel plates in concrete-filled thin-walled steel tubular beam-columns by using the finite element analysis method. Geometric and material nonlinear analyses are performed to investigate the critical local and post-local buckling strengths of steel plates under compression and in-plane bending. Initial geometric imperfections and residual stresses presented in steel plates, material yielding and strain hardening are taken into account in the nonlinear analysis. Based on the results obtained from the nonlinear finite element analyses, a set of design formulas are proposed for determining the critical local buckling and ultimate strengths of steel plates in concrete-filled steel tubular beam-columns. In addition, effective width formulas are developed for the ultimate strength design of clamped steel plates under non-uniform compression. The accuracy of the proposed design formulas is established by comparisons with available solutions. The proposed design formulas can be used directly in the design of composite beam-columns and adopted in the advanced analysis of concrete-filled thin-walled steel tubular beam-columns to account for local buckling effects.  相似文献   

11.
The ultimate strength and ductility of high strength thin-walled concrete-filled steel tubular (CFST) beam-columns with local buckling effects, are investigated in this paper, using a performance-based analysis (PBA) technique. The PBA technique accounts for the effects of geometric imperfections, residual stresses, strain hardening, local buckling and concrete confinement on the behavior of high strength thin-walled CFST beam-columns. The accuracy of the PBA technique is further examined by comparisons with experimental results. The PBA program is employed to study the effects of depth-to-thickness ratio, concrete compressive strengths, steel yield strengths and axial load levels on the stiffness, strength and ductility of high strength thin-walled CFST beam-columns under combined axial load and biaxial bending. The results obtained indicate that increasing the depth-to-thickness ratio and axial load levels significantly reduces the stiffness, strength and ductility of CFST beam-columns. Increasing concrete compressive strengths increases the stiffness and strength, but reduces the axial ductility and section performance of CFST beam-columns. Moreover, the steel yield strength has a significant effect on the section and strength performance of CFST beam-columns but does not have a significant effect on their axial and curvature ductility.  相似文献   

12.
This paper describes sixteen fire tests conducted on slender circular hollow section columns filled with normal and high strength concrete, subjected to concentric axial loads. The test parameters were the nominal strength of concrete (30 and 80 MPa), the infilling type (plain concrete, reinforced concrete and steel fiber reinforced concrete) and the axial load level (20% and 40%). The columns were tested under fixed-pinned boundary conditions and the relative slenderness at room temperature was higher than 0.5 in all of the cases. A numerical model was validated against the tests, in order to extend the results and understand the failure mode of such columns. It is the aim of this paper to study the influence in a fire situation of the use of high strength concrete, as opposed to normal strength concrete. The results have shown that for slender columns subjected to high temperatures, the behavior of high strength concrete was different than for stub columns, spalling not being observed in the experiments. Furthermore, the addition of steel fibers was not found very advantageous in slender columns, since no increment in terms of fire resistance was obtained for the columns which used this type of reinforcement. However, the addition of reinforcing bars seems to be the solution in some cases, where the use of external fire protection wants to be avoided in the design of HSS structures, since the reinforcing bars allow the tube to resist a higher axial load.  相似文献   

13.
This paper describes sixteen fire tests conducted on slender circular hollow section columns filled with normal and high strength concrete, subjected to concentric axial loads. The test parameters were the nominal strength of concrete (30 and 80 MPa), the infilling type (plain concrete, reinforced concrete and steel fiber reinforced concrete) and the axial load level (20% and 40%). The columns were tested under fixed-pinned boundary conditions and the relative slenderness at room temperature was higher than 0.5 in all of the cases. A numerical model was validated against the tests, in order to extend the results and understand the failure mode of such columns. It is the aim of this paper to study the influence in a fire situation of the use of high strength concrete, as opposed to normal strength concrete. The results have shown that for slender columns subjected to high temperatures, the behavior of high strength concrete was different than for stub columns, spalling not being observed in the experiments. Furthermore, the addition of steel fibers was not found very advantageous in slender columns, since no increment in terms of fire resistance was obtained for the columns which used this type of reinforcement. However, the addition of reinforcing bars seems to be the solution in some cases, where the use of external fire protection wants to be avoided in the design of HSS structures, since the reinforcing bars allow the tube to resist a higher axial load.  相似文献   

14.
This paper describes a series of 24 fire tests conducted on slender circular hollow section columns filled with normal and high strength concrete, subjected to eccentric axial load. It is a continuation of a previous research paper (Romero et al., 2011 [1]), where test results on centrally loaded columns were presented. The test parameters covered in this fire testing program were the nominal strength of concrete (30 and 90 MPa), the infilling type (plain, bar-reinforced and steel fiber reinforced concrete), the axial load level (20% and 40%) and the load eccentricity (20 and 50 mm). The columns were tested under fixed-pinned boundary conditions, with a relative slenderness at room temperature higher than 0.5 for all the specimens. The aim of this paper is to study the influence of eccentricity in combination with the type of concrete infill. The results show that the addition of steel fibers does not improve the fire resistance of slender columns under eccentric loads, as compared to columns filled with plain concrete. However, the addition of reinforcing bars increases the fire resistance of the columns in this situation. Filling the steel hollow section columns with concrete increases their fire resistance, the increase in load bearing capacity being more noticeable for columns filled with high strength concrete. A comparison with the current simple calculation model in Eurocode 4 Part 1.2 shows that, although the method is safe for eccentrically loaded columns, it produces a high error in the predictions for columns filled with plain or steel fiber reinforced concrete.  相似文献   

15.
This paper proposes an efficient numerical model for the simulation of the behavior of slender circular concrete-filled tubular columns subjected to eccentric axial load with single curvature, for the cases of both normal and high strength concrete. The paper focuses on the study of the influence that the variables affecting beam-column behavior (length and relative slenderness) and the variables affecting section behavior (diameter/thickness ratio, mechanical capacity of steel) have on the overall buckling of this type of column. An extended parametric study is carried out to propose design recommendations, primarily to establish the importance of the use of high strength concrete compared with that of normal strength concrete. The results show that for slender elements the optimum design is reached when the mechanical capacity of the steel is slightly lower than that of the concrete contribution.  相似文献   

16.
In this paper, a series of tests were carried out on short and slender concrete-filled stainless steel tubular columns to explore their performance under axial compression or combined actions of axial force and bending moment. Empty short steel hollow sections were also tested for comparison. The test results showed that the performance of the composite columns was quite good and have the potential to be used extensively as structural members. Comparisons of the test results were also made with several existing design methods for conventional concrete-filled carbon steel tubular columns as presented in Australian standard AS 5100 (2004), American code AISC (2005), Chinese code DBJ/T 13-51-2010 (2010), and Eurocode 4 (2004), which indicates that all the codes are somewhat conservative in predicting the load-carrying capacities of both short and slender columns.  相似文献   

17.
This paper presents the results of cyclic tests of fire-damaged concrete-filled steel tubular (CFST) beam-columns repaired by unidirectional carbon fibre reinforced polymer (CFRP) composites. The test parameters included the cross-section type (circular and square), the number of CFRP layers (1 and 2) and the axial load level (0-0.78). Based on the experimental measurements, the repair effects of CFRP wraps on the ultimate lateral strength, flexural stiffness, dissipated energy and ductility of the beam-columns are studied. The test results showed that the ultimate lateral strength, flexural stiffness and ductility can be enhanced to some extent due to the CFRP confinement effect. However, the strength and stiffness of all damaged specimens have not been fully restored in the current tests. Since there exist several possible solutions for the repair/strengthening of CFST members to restore/enhance their strength or stiffness, it seems that an appropriate evaluation method should be developed to make a suitable selection among them based on future comparative study.  相似文献   

18.
对3根带肋冷弯薄壁方钢管混凝土柱进行滞回试验,主要参数为轴压比。试验结果表明:纵向加劲肋有效延缓了钢管壁局部屈曲的发生;其滞回曲线饱满,具有良好的耗能能力;随着轴压比的增大,柱承载力略有增大,而延性、耗能能力则明显减小;当横向位移大于6倍的屈服位移时,大轴压比的刚度退化速度最快。建立了该类试件的有限元模型,对比可得有限元模拟结果与试验结果吻合较好。基于有限元模型对该类构件开展机理分析和参数分析。结果表明:在带肋冷弯薄壁方钢管的约束下,核心混凝土的强度得到了较大提高;钢管局部屈曲发生在峰值荷载后,局部屈曲只发生在纵向加劲肋和钢管角部间;材料强度、轴压比、钢管宽厚比和长细比等参数对该类构件的承载力有较大影响;混凝土强度、轴压比和长细比对荷载-位移骨架曲线形状有较大影响。基于参数分析建议了该类构件的简化滞回模型,简化计算结果和有限元计算结果吻合较好。  相似文献   

19.
This paper describes 24 tests conducted on slender circular tubular columns filled with normal, high, and ultra-high strength concrete for plain, bar reinforced and steel fiber reinforced columns. These were reinforced and subjected to both concentric and eccentric axial load. It is a continuation of a previous research paper (Portoles et al., 2011 [1]), which presented test results on eccentrically loaded plain concrete columns. The test parameters are nominal strength of concrete (30, 90 and 130 MPa), eccentricity e (0, 20 and 50 mm) and type of reinforcement. A comparison with the corresponding empty tubular columns is performed, as the aim of the paper is to analyze the influence of each type of infill and establish the best option for practical application. For the limited cases analyzed the results show that the addition of high or ultra-high strength infill is more useful for concentric loaded cases than for eccentric loaded ones, where it seems that the best design option is the utilization of bar reinforced concrete filling rather than steel fiber to reinforce CFST columns. The experimental ultimate load of each test was compared with the design loads from Eurocode 4, accurate for the eccentrically loaded tests.  相似文献   

20.
This paper presents a nonlinear fiber element analysis method for determining the axial load-moment strength interaction diagrams for short concrete-filled steel tubular (CFST) beam-columns under axial load and biaxial bending. Nonlinear constitutive models for confined concrete and structural steel are considered in the fiber element analysis. Efficient secant algorithms are developed to iterate the depth and orientation of the neutral axis in a composite section to satisfy equilibrium conditions. The accuracy of the fiber element analysis program is verified by comparisons of fiber analysis results with experimental data and existing solutions. The fiber element analysis program developed is employed to study the effects of steel ratios, concrete compressive strengths and steel yield strengths on axial load-moment interaction diagrams and the C-ratio of CFST beam-columns. The proposed fiber element analysis technique is shown to be efficient and accurate and can be used directly in the design of CFST beam-columns and implemented in advanced analysis programs for the nonlinear analysis of composite columns and frames.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号