共查询到19条相似文献,搜索用时 46 毫秒
1.
基于粒子滤波的机动目标跟踪算法仿真研究 总被引:4,自引:0,他引:4
针对非线性多目标模型,应用粒子滤波算法,这种方法不受模型线性和Gauss假设的约束,是一种处理非线性非高斯动态系统状态递推估计的有效算法。在粒子滤波的基础上融合扩展卡尔曼滤波算法和无迹卡尔曼滤波算法。融合后的新算法在计算提议概率密度分布时,粒子的产生充分考虑当前时刻的量测,使得粒子的分布更加接近状态的后验概率分布,再用平滑算法处理滤波的结果。仿真结果表明,算法有较好的跟踪效果。 相似文献
2.
3.
为解决机动目标跟踪的非线性和噪声不确定等问题,提出了一种新的滤波算法:融合了交互式多模型(IMM)、粒子滤波(PF)和无迹卡尔曼滤波(UKF)的IMM-UPF算法。该算法采用多模型结构以跟踪目标的任意机动,粒子滤波能处理非线性、非高斯问题,而采用UKF产生粒子,由于考虑了当前观测值,使得粒子的分布更接近后验概率密度分布,克服粒子的退化现象,从而提高估计精度。系统的模型集根据实际的目标系统设计了三个非线性模型。通过实例仿真,结果证明了IMM-UPF算法的有效性,且其性能优于PF、UPF算法。 相似文献
4.
基于粒子滤波的机动目标跟踪 总被引:1,自引:0,他引:1
在单机动目标跟踪中,目标的机动情况是未知的,提出的算法用粒子滤波器求加速度的估计,由Kalman滤波得到加速度的重要性概率密度函数。仿真实验结果表明,该算法可较好地跟踪目标状态(包括加速度)的变化。 相似文献
5.
自适应UKF算法在目标跟踪中的应用 总被引:14,自引:0,他引:14
针对目标跟踪中系统噪声统计特性未知导致滤波发散或者滤波精度不高的问题, 提出了一种自适应无迹卡尔曼滤波(Unscented Kalman filter, UKF)算法.该算法在滤波过程中,利用改进的Sage-Husa估 计器在线估计未知系统噪声的统计特性,并对滤波发散的情况进行判断和抑制, 有效提高了滤波的数值稳定性,减小了状态估计误差. 仿真实验结果表明,与标准UKF算法相比,自适应UKF算法明显改善了目标跟踪的精度和稳定性. 相似文献
6.
目标跟踪应用中,一类常见的混合估计问题是:目标运动建模在直角坐标系下且是非线性的,同时量测数据由传感器直接获得.通常处理该问题的做法是使用推广卡尔曼滤波器,但效果欠佳.为此,通过将无迹变换(UT)和BLUE算法相结合,提出了一种新型的UT-BLUE滤波器.该滤波器首先利用无迹变换对直角坐标系中的目标状态及其协方差作出预测,然后在保持传感器坐标系(极坐标系)下所固有的量测误差的同时,直接对它们作出更新估计.通过仿真, 将UT-BLUE滤波方法和EKF滤波方法进行比较,表明了该滤波方法的有效性和优越性. 相似文献
7.
单传感器纯方位跟踪问题仍是目前研究的重点和难点,方位角变化率很大时往往使得扩展卡尔曼滤波等矩匹配算法不稳定或发散。重点研究漂移瑞利滤波算法在方位角变化率很大的复杂单传感器纯方位目标跟踪场景下的性能,比较了漂移瑞利滤波,扩展卡尔曼滤波,不敏卡尔曼滤波,粒子滤波等其他非线性跟踪算法的性能,推导并计算了相关问题的Cramer-Rao下界并将其用作比较估值准确性和衡量算法性能的评价指标。仿真结果表明:漂移瑞利滤波算法的性能优于其他矩匹配算法,能达到与粒子滤波大体相同的计算精度,但它的计算速度比粒子滤波算法快几个数量级。 相似文献
8.
9.
针对非线性环境中存在的机动目标跟踪问题,对基于贝叶斯估计的粒子滤波器进行研究,为解决混合退火粒子滤波重要密度函数构造的问题,在混合退火粒子滤波的基础上,通过对系统状态和观测粒子方差的研究,提出了非线性环境下动态退火参数粒子滤波的改进算法,在混合退火粒子滤波中引入动态退火参数来构造高效的重要密度函数,提高了混合退火粒子滤波的跟踪精度,应用该滤波方法对机动目标模型进行仿真,并对多种滤波跟踪算法进行性能测试和比较,仿真实验结果表明,在非线性环境下该粒子滤波方法可行有效. 相似文献
10.
11.
In this paper, we propose a new framework of particle filtering that adopts the minimax strategy. In the approach, we minimize a maximized risk, and the process of the risk maximization is reflected when computing the weights of particles. This scheme results in the significantly reduced variance of the weights of particles that enables the robustness against the degeneracy problem, and we can obtain improved quality of particles. The proposed approach is robust against environmentally adverse scenarios, particularly when the state of a target is highly maneuvering. Furthermore, we can reduce the computational complexity by avoiding the computation of a complex joint probability density function. We investigate the new method by comparing its performance to that of standard particle filtering and verify its effectiveness through experiments. The employed strategy can be adopted for any other variants of particle filtering to enhance tracking performance. 相似文献
12.
13.
Hong Ping Gao Chang Ho Yu Jae Weon Choi Tae Il Seo 《International Journal of Control, Automation and Systems》2011,9(3):506-514
This paper presents a study involving prediction of a complicated maneuvering target, with the aim of improving the tracking performance of a fire control system (FCS). In this study, we predict the position of a complicated maneuvering target 5 s in advance using the information up to the current time. Because of the large error caused by the complicated maneuvers and the long prediction time interval, the mechanical system of the fire control system will take a heavy load. In order to cope with this problem, several approaches to decreasing the prediction error have been proposed including the prediction algorithms based on the multiple model(MM) filter, interacting multiple model (IMM) filter, and variable dimension with input estimation (VDIE) filter. Finally, comparative simulation results are presented to verify the performance of the filters. 相似文献
14.
针对再入阶段弹道目标的跟踪问题,提出一种新的自适应滤波算法,即强跟踪有限差分扩展卡尔曼滤波(STFDEKF)算法,用于非线性系统的目标跟踪。该方法使用Sterling内插公式进行多项式的近似,从而实现对非线性函数的近似,避免了非线性函数的求导运算;并且算法中引入强跟踪的因子来修正先验的协方差矩阵。新算法改进了跟踪精度,扩大了应用范围,增强了滤波收敛性。仿真实验将新算法与扩展卡尔曼滤波器(EKF)、有限差分扩展卡尔曼滤波器(FDEKF)进行了比较,结果表明,STFDEKF在跟踪精度和滤波可靠性上均优于EKF和FDEKF,但其计算复杂性更大。得出结论,STFDEKF是个很有效的非线性滤波算法。 相似文献
15.
16.
17.
仅有角测量的被动式机动目标跟踪 总被引:7,自引:0,他引:7
以往的被动式跟踪研究往往假定目标作匀速直线运动, 采用目标与跟踪站的相对距离和速度为状态变量, 因而相应的跟踪滤波器不能跟踪机动目标. 研究了仅有角测量的机动目标跟踪问题, 采用目标的位置、速度及加速度作为状态变量, 并对测量方程进行适当变换, 推导出一种伪线性机动目标自适应跟踪算法, 可用于单站或多站被动式机动目标跟踪. 大量的仿真研究表明了本算法的有效性, 其中多站跟踪比单站跟踪具有更高的精度、算法稳定性和快速收敛性. 相似文献
18.
In centralized multisensor tracking systems, there are out-of-sequence measurements (OOSMs) frequently arising due to different time delays in communication links and varying pre-processing times at the sensor. Such OOSM arrival can induce the “negative-time measurement update” problem, which is quite common in real multisensor tracking systems. The A1 optimal update algorithm with OOSM is presented by Bar-Shalom for one-step case. However, this paper proves that the optimality of A1 algorithm is lost in direct discrete-time model (DDM) of the process noise, it holds true only in discretized continuous-time model (DCM). One better OOSM filtering algorithm for DDM case is presented. Also, another new optimal OOSM filtering algorithm, which is independent of the discrete time model of the process noise, is presented here. The performance of the two new algorithms is compared with that of A1 algorithm by Monte Carlo simulations. The effectiveness and correctness of the two proposed algorithms are validated by analysis and simulation results. 相似文献
19.
Bearings only multi-sensor maneuvering target tracking 总被引:2,自引:0,他引:2
Darko Muicki 《Systems & Control Letters》2008,57(3):216-221
This paper presents a solution to target trajectory estimation when multiple asynchronous passive bearings only sensors with uncertain positions are employed. Asynchronous target position triangulation is achieved. Gaussian mixture measurement presentation, together with a track splitting algorithm allows space/time integration of the target position uncertainty with a simple algorithm. Gaussian mixture measurement presentation incorporates sensor position uncertainty, as well as the spatial uncertainty brought by bearings only measurement. Each sensor detects the target emissions independently, and the measurements are incorporated into track as they arrive. Measurements by arbitrary number of sensors can be incorporated, provided that the triangulation observability criterion is satisfied. The approach is verified by a single target, two sensors, two-dimensional surveillance simulation experiment. 相似文献