首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
采用价格低廉的二乙胺为模板剂,通过球磨晶种诱导二次生长法制备中空纤维负载型SAPO-34分子筛膜用于CO_2/CH_4气体分离。系统考察了诱导晶种大小、膜合成液中二乙胺含量、铝源含量与晶化时间对膜结构形貌以及分离性能的影响。结果表明:相比于原始晶种,球磨晶种诱导制备SAPO-34分子筛膜层更加致密。随着膜合成液中二乙胺含量增加,膜表面分子筛晶体逐渐由SAPO-11向SAPO-34转变,当二乙胺含量过高时,载体表面未形成SAPO-34膜。当合成液中铝源含量较低时,分子筛膜晶化不够完全,当铝源含量过高时,膜表面晶体粒径逐渐减小甚至难以成核,膜层厚度减薄,不易生成连续的膜层。随着晶化时间的增加,膜层厚度逐渐增加,膜表面趋于致密。当膜合成液摩尔组成为1.0Al_2O_3∶0.9P_2O_5∶0.6SiO_2∶2.0DEA∶100H_2O,晶化时间为36 h时,球磨晶种诱导制得的SAPO-34分子筛膜分离性能最佳,膜的CO_2渗透性为1.11×10~(-6)mol·m~(-2)·s~(-1)·Pa~(-1),CO_2/CH_4分离选择性达80。  相似文献   

2.
采用微波辅助二次生长法在α-Al2O3载体上合成了SAPO-34分子筛膜,并将其应用于CO2/CH4分离。通过扫描电镜、X射线衍射和傅里叶变换红外光谱等表征方法,系统考察了加热方式、晶种粒径、老化时间和晶化时间对SAPO-34分子筛膜表面形貌和结构的影响。实验结果表明,以0.4 μm分子筛作为晶种,在老化24 h,然后微波加热晶化4 h后可制备出厚度约为1.5 μm的致密、无缺陷SAPO-34分子筛膜,其平均CO2/CH4分离因子和CO2渗透率分别达到81和6.6×10-7 mol·m-2·s-1·Pa-1,制备方法可靠,重复性高。  相似文献   

3.
采用生物质模板(茶花粉)掺杂制备SAPO-34分子筛,研究了SAPO-34分子筛对CO2和CH4的静态吸附性能,同时考察了水热晶化时间、硅铝摩尔比(SiO2/Al2O3摩尔比)和有机模板剂对茶花粉掺杂合成SAPO-34分子筛的影响。结果表明,茶花粉的加入可以制备性能良好的SAPO-34分子筛并降低其尺寸在1~2μm之间;晶化时间(24~36 h)的延长有利于分子筛结晶;当硅铝比为0.6、有机模板剂摩尔比为2时,SAPO-34分子筛的晶化效果最佳。茶花粉清液合成的SAPO-34分子筛在静态吸附实验压力为100 kPa时,CO2和CH4的总吸附量分别为2.92 mmol/g和0.58 mmol/g, CO2/CH4的理想分离系数为5.05。  相似文献   

4.
丁婉月  马晓华 《化工学报》2021,72(8):4410-4417
SAPO-34分子筛膜因其独特的孔道结构和优异的稳定性被广大学者所青睐,目前的研究大多集中在催化、吸附和气体分离等方面,而关于其在液体分离中的研究鲜少报道。本文在Al2O3中空纤维支撑体表面分别一次和二次合成制备了SAPO-34分子筛膜,考察了四种不同硅铝比对SAPO-34分子筛膜结构形貌和性能的影响,并用于乙醇溶液的渗透汽化脱水,考察了操作温度、原料液中乙醇浓度以及分子筛合成次数对分离效果的影响。研究结果表明,硅铝比为0.5的二次合成的SAPO-34分子筛膜具有连续而致密的分离层和良好的渗透汽化分离性能,60℃下对乙醇(90%)-水(10%)的分离因子可以达到1170,渗透通量为0.9 kg/(m2·h)。  相似文献   

5.
孔令涛  沈本贤  蒋章 《化工进展》2015,34(2):413-418
以三乙胺-四乙基氢氧化铵为复合模板剂,合成了不同硅含量的SAPO-34分子筛,并采用XRD、NH3-TPD、以及29Si MASNMR等方法对其进行了表征,最后考察了不同硅含量SAPO-34分子筛催化转化氯甲烷制取乙烯、丙烯的反应性能。结果表明:硅铝比在0.10~0.80时,均能合成规整的SAPO-34立方晶粒;硅铝比低于0.05或高于1.00时,易伴随形成片状和无定形晶相。当硅铝比为0.6时,SAPO-34的结晶度最大,微孔比表面积为588m2/g,微孔体积为0.267cm3/g。硅铝比从0.05到0.60逐渐增大时,SAPO-34酸强度和酸数目明显增多,继续增大硅铝比,酸强度增强,弱酸数目减少。在T=425℃、氯甲烷WHSV=2.73h-1时,对所合成SAPO-34分子筛催化氯甲烷的反应性能进行了评价,随硅铝比增大,SAPO-34的酸性增强,氯甲烷的初始转化率逐渐升高,然而二次反应加剧致使乙烯丙烯选择性略有下降。  相似文献   

6.
在季戊四醇和四乙基氯化铵低共融混合物中,采用离子热法将苏州高岭土为主要原料的微球原位晶化制备了SAPO-34分子筛微球。考察了晶化条件和晶化液对原位合成的影响。通过XRD和SEM等手段对合成的微球进行了表征。实验结果表明,在晶化温度为180 ℃下,晶化液物质的量比为n(二氧化硅)∶n(氧化铝)∶n(五氧化二磷)∶n[N-甲基咪唑(2-甲基咪唑)]∶n(氟化氢)∶n(水)=2.26∶1∶0.5∶0.66∶0.3∶26.4时,晶化20 h可以合成出SAPO-34分子筛微球。加入导向剂N-甲基咪唑和2-甲基咪唑有利于SAPO-34分子筛的合成。  相似文献   

7.
袁德林  邢爱华  繆平  崔立山  孙琦 《化工进展》2019,38(5):2353-2362
以四乙基氢氧化铵(TEAOH)和二乙铵(DEA)为混合模板剂,在低投料硅铝比[n (SiO2) ∶n (Al2O3)=0.2]及低模板剂用量[n (模板剂) ∶n (Al2O3)=1.9]下,考察了两种模板剂比例的调变对合成的SAPO-34分子筛物化性能及其催化甲醇制烯烃反应(MTO)催化性能的影响。研究发现,通过改变两种模板剂比例,可以明显调变SAPO-34分子筛晶粒尺寸、硅分布(晶粒表面和体相的硅分布)、硅原子的配位环境,从而影响其MTO催化反应的效果。在低模板剂用量制备的SAPO-34产品中,晶粒尺寸是影响其催化寿命的最主要因素,小晶粒分子筛因其扩散路径短有利于延长催化寿命。此外,硅分布也是影响催化寿命的因素之一,表面富硅的分子筛导致外表面积炭程度大于晶内积炭,积炭趋势由外向内发展,加速分子筛“假性”失活。硅分布还影响MTO反应产物分布,表面富硅分子筛外表面更易发生非择形催化,显著提高C4~C6等产物的选择性,不利于目标产物双烯(乙烯+丙烯)选择性的提高。  相似文献   

8.
固相转化法有利于合成硅取代型磷酸铝分子筛(SAPO-5)。采用XRD、SEM、EDS表征方法研究了升温速率和晶化模式对SAPO-5分子筛结构的影响。结果表明,在高升温速率(140℃·h-1)和低升温速率(5.8℃·h-1)下能合成出纯SAPO-5分子筛,在中等升温速率(17.5~70℃·h-1)下则有SAPO-34分子筛与SAPO-5伴生。此外,晶化模式对SAPO-5分子筛的形貌有显著影响。在中等升温速率下,动态晶化形成的SAPO-5分子筛为球形,静态晶化则为六边形片状,但Si的取代机制均可能为SM3取代。在高升温速率和低升温速率下,晶化模式不影响SAPO-5分子筛的形貌。而Si在动态晶化时为SM2取代,静态晶化时为SM3取代。  相似文献   

9.
采用水热法合成SAPO-34分子筛,并确定了合成SAPO-34分子筛的最佳晶化时间,晶化温度和初始凝胶比,通过扫描电子显微镜和X射线衍射对分子筛进行表征,确定得到形貌较好、结晶度较高的SAPO-34分子筛。以SAPO-34分子筛为载体采用浸渍法制备Pd/SAPO-34复合催化剂,通过透射电子显微镜、紫外-可见漫反射光谱、X射线光电子能谱和X射线衍射光谱对Pd/SAPO-34复合催化剂进行表征,确定SAPO-34分子筛负载金属钯后形貌依然规则完整,并且分散度较好,催化活性中心为Pd0。将Pd/SAPO-34复合催化剂应用于催化合成维生素B_1中间体2-甲基-4-氨基-5-氨基甲基嘧啶反应,结果证明Pd/SAPO-34复合催化剂具有良好的催化效果,能使反应的转化率和选择性达到99%以上。  相似文献   

10.
以四乙基氢氧化铵为模板剂,水热合成法制备SAPO-34分子筛,采用XRD和SEM进行表征,考察硅铝比、晶化温度、晶化时间和陈化时间对分子筛形貌和粒径的影响。结果表明,在硅铝物质的量比为0.8、晶化温度200℃、晶化时间24 h和陈化时间4 h条件下,可合成晶粒均匀和晶体表面光滑的粒径仅为2μm的SAPO-34分子筛。  相似文献   

11.
SAPO-34 zeolite membranes show high efficiency for CO2/CH4 separation but suffer from the reduction of separation performance when exposed to humid atmosphere. In this work, n-dodecyltrimethoxysilane (DTMS) was used to modify the hollow fibers supported SAPO-34 membranes to increase the external surface hydrophobicity and thus sustain their performance under moisture environment. The modified membranes were fully characterized. Their separation performance was extensively investigated in both dry and wet gaseous systems and compared with the un-modified ones. The un-modified SAPO-34 membrane exhibited a high separation selectivity of 160 and CO2 permeance of 1.18×10-6 mol·m-2·s-1·Pa-1 for separation of dry CO2/CH4 at 298 K. However, its separation selectivity declined to 0.9 and the CO2 permeance was only about 1.7×10-8 mol·m-2·s-1·Pa-1 for wet CO2/CH4 at same temperature. High temperature (e.g. 353 K) could reduce the effect of moisture to improve SAPO-34 separation selectivity, but further increasing temperature (e.g. 373 K) led to decrease in CO2/CH4 separation selectivity. A significant decrease of selectivity was observed at higher pressure drop. The modified SAPO-34 membrane showed decreased CO2 permeance but increased separation selectivity for dry CO2/CH4 gas mixture, and super performance for wet CO2/CH4 gas mixture due to the improved hydrophobicity of membrane surface. A separation selectivity of 65 and CO2 permeance of 4.73×10-8 mol·m-2·s-1·Pa-1 for wet CO2/CH4 mixture can be observed at 353 K with a pressure drop of 0.4 MPa. Furthermore, the modified membrane exhibited stable separation performance during the 120-hour test for wet CO2/CH4 mixture at 353 K. The hydrophobic modification paves a way for SAPO-34 membranes in real applications.  相似文献   

12.
In this study, the effects of 1-Ethyl-3-methylimidazolium tetrafluoroborate ionic liquid on CO2/CH4 separation performance of symmetric polysulfone membranes are investigated. Pure polysulfone membrane and ionic liquid-containing membranes are characterized. Field emission scanning electron microscopy (FE-SEM) is used to analyze surface morphology and thickness of the fabricated membranes. Energy dispersive spectroscopy (EDS) and elemental mapping, Fourier transform infrared (FTIR), thermal gravimetric (TGA), X-ray diffraction (XRD) and Tensile strength analyses are also conducted to characterize the prepared membranes. CO2/CH4 separation performance of the membranes are measured twice at 0.3 MPa and room temperature (25 °C). Permeability measurements confirm that increasing ionic liquid content in polymer-ionic liquid membranes leads to a growth in CO2 permeation and CO2/CH4 selectivity due to high affinity of the ionic liquid to carbon dioxide. CO2 permeation significantly increases from 4.3 Barrer (1 Barrer=10-10 cm3(STP)·cm·cm-2·s-1·cmHg-1, 1cmHg=1.333kPa) for the pure polymer membrane to 601.9 Barrer for the 30 wt% ionic liquid membrane. Also, selectivity of this membrane is improved from 8.2 to 25.8. mixed gas tests are implemented to investigate gases interaction. The results showed, the disruptive effect of CH4 molecules for CO2 permeation lead to selectivity decrement compare to pure gas test. The fabricated membranes with high ionic liquid content in this study are promising materials for industrial CO2/CH4 separation membranes.  相似文献   

13.
曹晓畅  王志  乔志华  王纪孝  许振良 《化工学报》2018,69(11):4778-4787
采用一步相分离法,制备以聚醚砜(PES)为主体材料,二乙醇胺(DEA)为添加剂和氨基载体的膜,用于CO2分离。考察了PES浓度、DEA浓度、膜厚度对CO2/N2分离性能的影响,同时考察了膜性能的长时间稳定性。当涂膜液中DEA/PES的质量比为12/26、刮刀与无纺布的距离为300 μm、进料气压力为0.11 MPa(表压)时,膜的CO2渗透速率可达274 GPU,CO2/N2分离因子可达50。测试温度低于40℃时,DEA/PES膜的CO2渗透速率和CO2/N2分离因子保持稳定。另外,对CO2/N2分离性能较好的DEA/PES膜(质量比为12/27)进行CO2/CH4分离性能测试,在1 MPa(表压)下性能优于商品膜。上述结果表明,本文研制的DEA/PES膜制备步骤简单,易于规模化制备,性能较优,在CO2分离领域具有良好的应用前景。  相似文献   

14.
Silicoaluminophosphate (SAPO) membranes with Si/Al gel ratios from 0.05 to 0.3 were synthesized by in situ crystallization onto porous, tubular stainless steel support. Pure SAPO-34 membranes were obtained when the Si/Al ratio was 0.15 or higher. The adsorbate polarizability correlated with the adsorption capacity on SAPO-34, and the amounts of gases adsorbed were in the order: CO2 > CH4 > N2 > H2. The Si/Al ratio did not affect the pore volume significantly, but it changed the CO2 and CH4 adsorption equilibrium constants. The SAPO-34 membranes effectively separated CO2 from CH4 for feed pressures up to 7 MPa. At 295 K, for a pressure drop of 138 kPa and a 50/50 feed, the CO2/CH4 selectivity was 170 for a membrane with a Si/Al gel ratio of 0.15. At 7 MPa, the CO2/CH4 selectivity was 100 and the CO2 permeance was 4 × 10−8 mol/(m2 · s · Pa) at 295 K. This membrane was also separated CO2/N2 (selectivity = 21) and H2/CH4 (selectivity = 32) mixtures at 295 K and a pressure drop of 138 kPa. Competitive adsorption and difference in diffusivities are responsible for CO2/CH4 and CO2/N2 separations, whereas the H2/CH4 separation was due to diffusivity differences. For a membrane with Si/Al gel ratio of 0.1, a mixture of SAPO-34 and SAPO-5 formed, and the CO2/CH4 selectivity was lower.  相似文献   

15.
SSZ-13 membranes with high separation performances were prepared using ball-milled nanosized seeds by once hydrothermal synthesis. Separation performances of SSZ-13 membranes in CO_2/CH_4 and N_2/CH_4 mixtures were enhanced after synthesis modification. Single-gas permeances of CO_2, N_2 and CH_4 and ideal selectivities were recorded through SSZ-13 membranes. The effects of temperature, pressure, feed flow rate and humidity on separation performance of the membranes were discussed. Three membranes prepared after synthesis modifications had an average CO_2 permeance of 1.16 × 10~(-6) mol·(m~2· s·Pa)~(-1)(equal to 3554 GPU) with an average CO_2/CH_4 selectivity of 213 in a 50 vol%/50 vol% CO_2/CH_4 mixture. It suggests that membrane synthesis has a good reproducible. The membrane also displayed a N_2 permeance of 1.07 × 10~(-7) mol·(m~2·s·Pa)~(-1)(equal to 320 GPU) with a N_2/CH_4 selectivity of 13 for a 50 vol%/50 vol% N_2/CH_4 mixture. SSZ-13 membrane displayed stable and good separation performance in the wet CO_2/CH_4 mixture for a long test period over 100 h at 348 K. The current SSZ-13 membranes show great potentials for the simultaneous removals of CO_2 and N_2 in natural gas purification as a facile process suitable for industrial application.  相似文献   

16.
Permeation experiments for Ar/CH4 and CO2/H2 mixtures across a SAPO-34 membrane were performed with the objective of highlighting their distinct diffusion characteristics. For the Ar/CH4 mixture, the effective transport coefficients of the individual components in the mixture were found to be practically the same as those obtained from unary permeation experiments, when compared at the same total loading at the upstream face of the membrane. There is no speeding-up of the tardier CH4. Only at the high loadings is there evidence of a small, about 10%, slowing-down of the more mobile Ar.

A different picture emerges for permeation of CO2/H2 mixtures across SAPO-34 membrane. While the transport coefficient of CO2 is practically identical to those obtained from unary experiments, there is a significant slowing-down of the more mobile H2. At the highest loading, the transport coefficient of H2 is about a third of the value of the pure component.

Permeation of CO2/CH4 mixtures across an MFI membrane showed that there is a significant slowing-down of the more mobile CH4 with concomitant speeding-up of the tardier CO2.

The incorporation of the Vignes interpolation formula for the exchange coefficient Ð12 in the Maxwell–Stefan equations does not adequately reflect the slowing-down and speeding-up phenomena for either SAPO-34 or MFI membranes.  相似文献   


17.
采用壳层具有介孔结构的聚吡咯中空纳米微球作为填料,和聚氧化乙烯单体共混自由基聚合制备了混合基质膜。结果表明,聚吡咯微球与基质相容性较好,未见明显团聚现象和缺陷。混合基质膜的渗透系数随填料含量的增加先增大后减少,在0.5%处达到最大值,CO2渗透系数增长31%;CO2/N2分离系数有所降低,CO2/CH4分离系数则变化不大。研究表明,由于聚合物链段对微球壳层的介孔填充,气体在膜内的扩散系数不升反降,渗透系数的提高主要是由于溶解度系数的变化,而这也导致了溶解选择性的变化,进而影响了分离系数。  相似文献   

18.
作为一种高效的分离方法,膜法分离非常规天然气具有较理想的应用前景。相较CH4优先渗透膜,N2优先渗透膜优势在于分离N2/CH4混合气后CH4处于高压侧,利于后续处理。以均苯三甲酰氯为油相单体,间苯二胺为水相单体,采用界面聚合法在聚砜基膜上制备致密超薄聚酰胺分离层,并通过向其中引入孔径可允许N2分子通过而不允许CH4分子通过的纳米颗粒ZIF-90,在膜内形成固定的N2传递通道,成功制备了用于脱氮提纯CH4的N2优先渗透混合基质膜。膜渗透选择性能测试结果显示当混合基质膜中纳米颗粒掺杂量为0.30 g·L-1时,2 bar(1 bar=0.1 MPa)进料压力下,N2渗透速率达1.16×10-9 mol·m-2·s-1·Pa-1,N2/CH4分离因子达16.6,分离因子比未掺杂ZIF-90的聚酰胺膜提高46.5%,具有一定的处理非常规天然气脱氮提纯甲烷的应用潜力。  相似文献   

19.
作为一种高效的分离方法,膜法分离非常规天然气具有较理想的应用前景。相较CH4优先渗透膜,N2优先渗透膜优势在于分离N2/CH4混合气后CH4处于高压侧,利于后续处理。以均苯三甲酰氯为油相单体,间苯二胺为水相单体,采用界面聚合法在聚砜基膜上制备致密超薄聚酰胺分离层,并通过向其中引入孔径可允许N2分子通过而不允许CH4分子通过的纳米颗粒ZIF-90,在膜内形成固定的N2传递通道,成功制备了用于脱氮提纯CH4的N2优先渗透混合基质膜。膜渗透选择性能测试结果显示当混合基质膜中纳米颗粒掺杂量为0.30 g·L-1时,2 bar(1 bar=0.1 MPa)进料压力下,N2渗透速率达1.16×10-9 mol·m-2·s-1·Pa-1,N2/CH4分离因子达16.6,分离因子比未掺杂ZIF-90的聚酰胺膜提高46.5%,具有一定的处理非常规天然气脱氮提纯甲烷的应用潜力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号