首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
全容式LNG储罐是目前国内LNG接收站普遍采用的罐型,LNG储罐储存低温液体,内外温差大,罐体结构复杂,温度场分布对储罐的结构设计影响大。以国内某LNG接收站的全容式储罐为例,通过对储罐底部、罐壁和顶部结构及传热过程的分析,建立了罐体各部位温度场计算模型,利用ANSYS软件计算得到了LNG储罐罐顶、罐壁、罐底的温度场分布,并分析了计算结果。储罐结构设计时应考虑储罐绝热层与内罐体接触部位热应力影响;同时应优化储罐底部的结构,有效降低罐底漏热量。  相似文献   

2.
本期导读     
<正>研究探讨RESEARCH DISCUSSION LNG全容罐包含金属内罐和预应力混凝土外罐两层罐体结构,在正常运行条件下,低温LNG液体储存在内罐中,在泄漏工况下,内罐中的LNG液体将与外罐内侧接触,此时外罐内外壁之间产生巨大的温度差,此温差需作为外罐结构设计的输入数据。《大型LNG储罐泄漏工况下外罐温度场分析》一文,基于LUSAS有限元分析软件采用2D轴对称实体单元对20万m3LNG储罐的混凝土外罐进行温度场分析,分析中考虑了保冷材料导热系  相似文献   

3.
LNG储罐结构复杂,储罐内部与外界环境存在着巨大温差,罐体温度场的数值模拟结果对于LNG储罐的设计具有参考价值。文章以全容式LNG储罐为例,选取1/12储罐的三维模型作为研究对象,建立了基于ANSYS软件的储罐罐体三维稳态温度场数值计算模型,计算得到罐体、罐底与罐壁连接处和罐顶与罐壁连接处的温度场分布图,并进行了分析。  相似文献   

4.
<正>3月8日,国内最大的20万m3 LNG储罐—江苏LNG项目二期工程T-1204储罐一次升顶成功,标志着中国石油大型LNG储罐建造技术取得重大突破。T-1204储罐是江苏LNG二期工程新建储罐,采用落地电伴热式承台,为全容式混凝土储罐,圆筒形外罐直径86.4 m,高44.2 m;圆拱形钢质罐顶总重约1 000 t,顶部中心距罐内地面56 m;储罐有效罐容20万m3,是目  相似文献   

5.
为解决全容式LNG储罐罐顶仪表隔离阀选型无依据,实际工程设计常保守采用超低温深冷阀门的问题,对全容式LNG储罐罐顶仪表隔离阀功能、操作维修工艺和标准中LNG介质对超低温深冷阀门的结构要求进行了研究。在考虑LNG储罐设计参数和LNG储罐罐顶管嘴设计等因数的基础上,将罐顶管嘴结构与超低温深冷阀门结构进行对比,找出LNG储罐罐顶仪表隔离阀选型设计理论依据,得出LNG储罐罐顶仪表隔离阀可选用碳钢阀门或极端工况下选用非低温奥氏体不锈钢阀门,无需采用超低温深冷阀门的结论。天津LNG储罐项目选用非低温奥氏体不锈钢阀门,节省了费用,缩短了采办周期。  相似文献   

6.
随着LNG行业的发展和需求量的增加,国内外均在大量建设大型液化天然气接收终端和天然气液化厂,而LNG混凝土全容罐作为一种安全性非常高的存储设施被广泛使用。作为LNG全容罐混凝土外罐罐顶浇注和内罐吊顶保温层支承的穹顶结构是LNG储罐建造中的一项重点和难点,本文以天津LNG全容储罐为例介绍穹顶结构的建造工艺。  相似文献   

7.
<正>2015年3月8日,国内首座20×10~4 m~3 LNG储罐——江苏LNG项目二期工程T-1204储罐一次升顶成功,标志着中国石油大型LNG储罐建造技术取得重大突破。T-1204储罐是江苏LNG二期工程新建储罐,采用落地电伴热式承台,为全容式混凝土储罐,圆筒形外罐直径86.4 m,高44.2m;圆拱形钢质罐顶总重约1 000 t,顶部中心距罐内地面56 m;储罐有效罐容20×10~4 m~3,是目前国内最大的LNG储罐。T-1204储罐升顶采用微正压空气浮升技术,使用大功率鼓风机向罐内输送压缩风产生浮力,将圆拱形钢质罐顶从罐内地面沿混凝土外罐内壁浮升至顶部,提升高度41 m,为国内大型储罐垂直升顶位移最大、穹顶最重。此次升顶通过穹顶顶升位移测量系  相似文献   

8.
LNG全容罐包含金属内罐和预应力混凝土外罐两层罐体结构,在正常运行条件下,低温LNG液体储存在内罐中,在泄漏工况下,内罐中的LNG液体将与外罐内侧接触,此时外罐内外壁之间产生巨大的温度差,此温差需作为外罐结构设计的输入数据。基于LUSAS有限元分析软件采用2D轴对称实体单元对20万m~3 LNG储罐的混凝土外罐进行温度场分析,分析中考虑了保冷材料导热系数随温度的变化,计算了外罐分别在夏、冬两季时正常运行、小泄漏、中泄漏、全泄漏共8个工况下混凝土外罐的温度分布。分析结果可作为预应力钢筋混凝土外罐结构设计的温度作用输入条件。  相似文献   

9.
全容式LNG储罐的混凝土外罐是由圆形底板、圆柱形预应力罐壁和穹形罐顶组成的超静定结构。在进行混凝土外罐的有限元分析时,必须先确定外罐的几何尺寸,这些几何尺寸的合理与否关系到计算分析的效率。通过对外罐在起控制作用的荷载作用下的受力特性分析,结合不同设计极限状态下的强度和正常使用要求及各自的荷载系数,推导了罐顶厚度、罐顶腋部厚度和罐壁厚度的计算公式。研究结果已应用到江苏LNG、大连LNG的工程设计中,证明是正确的。  相似文献   

10.
为研究风载荷对大型全容式LNG储罐的影响,以某项目16万m3储罐为模型,借助ANSYS有限元软件,搭建LNG储罐精细化模型。依照《建筑结构荷载规范》,计算储罐墙体和穹顶处风压值,借助APDL工具,为有限元模型单元加载差异化风载荷,仿真分析风载荷效应。数值分析结果表明,风载荷产生的位移和应力相对较小,并非控制工况。分析了结构相对薄弱处的位移和应力规律,可供相关工程和设计人员参考。  相似文献   

11.
大型LNG储罐外罐长期预应力损失分析   总被引:1,自引:0,他引:1  
由于混凝土收缩徐变及钢筋应力松弛的耦合作用,LNG储罐外罐预应力系统将产生长期预应力损失,严重影响储罐的安全性能。为此,基于按龄期调整的有效模量法及混凝土结构设计规范中的相关模型,以国内某大型LNG储罐外罐为研究对象,应用ABAQUS有限元软件,建立了多组模型分别模拟收缩徐变损失、应力松弛损失及其耦合作用下的损失,分析了混凝土收缩徐变及应力松弛的相互作用对长期预应力损失的影响规律,并讨论了双向设置预应力对长期预应力损失的影响。研究结果表明:(1)环向、竖向预应力筋长期损失终值(50年)最大值分别达到张拉控制应力的10.97%、17.02%;(2)环向、竖向预应力筋在收缩徐变和应力松弛耦合作用下的损失分别为收缩徐变损失与应力松弛损失代数和的83.59%和86.33%;(3)提出相互作用折减系数,当收缩徐变损失和应力松弛损失大小相近时的折减系数最小;(4)竖向预应力对环向预应力筋长期预应力损失的影响较为明显。结论认为,该研究成果有助于提高大型LNG储罐混凝土外罐的安全性。  相似文献   

12.
张超 《天然气工业》2017,37(11):106-111
顶梁框架设计是LNG储罐设计中最重要的部分之一,但目前我国对于超大型LNG储罐顶梁框架系统的计算还存在着屈曲特征值衡量标准不统一、计算假定条件多、与国内规范规定不一致等诸多问题。为此,在引入材料非线性、结构非线性和考虑初始缺陷的基础上,应用大型非线性有限元计算软件ABAQUS开展了超大型LNG储罐顶梁框架及衬板系统的建模及其受力与稳定性的计算分析,进而建立了一套完整的超大型LNG储罐顶梁框架及衬板结构体系的设计算法,并应用于国内某20×10~4 m~3 LNG储罐的设计工作当中。应用结果表明:(1)该设计算法的结构体系由壳单元和梁单元组成,连接方式为共节点,能够准确模拟实际情况;(2)受力计算分为10个工况,屈曲计算分为7个工况,包含LNG储罐顶梁框架及衬板结构体系在施工过程中的所有工况;(3)顶梁框架最大应力为125.7 MPa、衬板最大应力为101.4 MPa、屈曲计算最小安全系数为2.57,LNG储罐顶梁框架在该体系下的受力及稳定性均能满足要求。该研究成果可为相关设计计算提供参考。  相似文献   

13.
地上全容式混凝土顶LNG储罐的冷却动态模拟   总被引:1,自引:0,他引:1  
LNG储罐冷却是LNG接收站投产过程中风险最高、难度最大的环节,为了合理地控制冷却速度、储罐压力,以及选择适当的环境温度以降低BOG的排放量,对地上全容式混凝土顶LNG储罐的冷却过程进行了动态模拟。基于质量、能量守恒原理建立了LNG储罐冷却计算模型,根据甲烷特性参数及大连LNG接收站实际冷却情况确定了冷却计算模型中的相关参数,进而分析了LNG储罐冷却过程中冷却速度、环境温度、储罐压力与LNG需求量、BOG排放量之间的变化规律。结果表明:①随着冷却速度的增大,LNG需求量、BOG排放量逐渐减小,相同储罐温度下,LNG流量逐渐增加,排放BOG流量逐渐减小;②随着环境温度的增大,LNG需求量和流量逐渐增加,BOG排放量和流量也逐渐加;③储罐压力对LNG需求量和BOG排放量影响较小。据此,提出建议:①在LNG接收站对储罐进行冷却时应尽量选择在环境温度较低的冬季,以降低BOG的排放量;②在确保罐内温差正常的情况下,可尽量提高储罐冷却速度至-5 K/h,以便减少BOG的排放量,达到节能减排的目的。  相似文献   

14.
大型LNG储罐外罐在混凝土浇筑过程中,水泥水化热会导致外罐产生较大的温度应力,从而引起混凝土开裂,将严重影响储罐的耐久性。为此,以山东某大型LNG储罐混凝土外罐为研究对象,采用ADINA有限元软件建立了精细化的LNG储罐有限元模型,按照实际的施工顺序与时间,模拟了LNG储罐外罐混凝土分层浇筑过程中的早期温度场分布;在考虑混凝土龄期效应的基础上,将外罐的温度场和结构场进行耦合,分析了外罐的温度应力及裂缝分布情况,评估了外罐混凝土开裂的风险。结果表明:1外罐在施工期间将产生较大的内外温差,引起较大的温度应力;2第1浇筑层的温度应力明显大于其他浇筑层,且第一主应力为环向应力,将使此处混凝土产生沿竖向开展的裂缝;3因为约束作用减弱,其他浇筑层混凝土产生温度裂缝的可能性很小。该研究成果为LNG储罐外罐温度裂缝控制提供了参考。  相似文献   

15.
谢剑  李响  朱俊岩 《天然气工业》2014,34(9):113-117
当前的全容式LNG储罐内罐材料多为9%镍钢,建造材料难以本土化,导致建造费用高、建设工期长;采用全混凝土LNG(ACLNG)储罐可降低造价、缩短工期。国外虽已建成较小尺寸的全混凝土LNG储罐,但该领域的研究存在断层,而我国尚未开展相关研究。为此,介绍了国外全混凝土LNG储罐的研究现状、发展历程、结构形式,并开展了低温环境下(试验温度最低至-170℃)混凝土与钢材的力学性能试验、混凝土冻融循环试验、低温下混凝土与钢材的黏结性能试验、钢筋与预应力混凝土梁的受弯性能试验。据此总结出了混凝土在低温环境下的工作特性,为全混凝土LNG储罐的建造设计提供了理论支持。同时,针对影响储罐结构安全性的混凝土液密性及冻融循环问题,提出了相应的解决措施。为了促进全混凝土LNG储罐的发展,还建议持续开展以下研究工作:1混凝土内罐的开裂情况分析;2地震作用下的内外罐整体性能分析;3按照ACI 376—2010要求对储罐进行承载能力极限状态与正常使用极限状态的模拟设计。  相似文献   

16.
翟希梅  王恒  周庆生  范峰 《石油学报》2013,34(4):780-786
以160 000 m3大型预应力液化天然气(LNG)全容罐混凝土外罐为研究对象,在利用ANSYS软件建立精细化LNG储罐混凝土外罐有限元模型的基础上,按实际结构施工顺序与时间,模拟了LNG储罐混凝土外罐全部混凝土浇筑过程,获得了在变温条件下,由水化热作用产生的混凝土外罐早期温度场分布;在考虑混凝土收缩和徐变的条件下,采用增量法计算了混凝土外罐的早期温度应力,确定了随时间及配筋率变化的混凝土早期抗拉强度,进而对LNG储罐混凝土外罐施工阶段的裂缝发育特征及分布规律进行了预测。结果表明,混凝土收缩对温度应力影响显著,在150 d的模拟时间段内结构温度应力呈现持续增长状态;第1浇筑段的LNG外罐温度应力明显大于其他浇筑段的温度应力,且该浇筑段的罐壁在模拟期内将产生竖向裂缝,扶壁柱处将产生局部环向裂缝。该结论可为同类工程施工建造开展相应的抗裂措施提供依据。  相似文献   

17.
全容式LNG储罐绝热性能及保冷系统研究   总被引:1,自引:0,他引:1  
彭明  丁乙 《天然气工业》2012,32(3):94-97
我国大型LNG接收站中的储罐均为全容式LNG储罐,其通常处于低温微正压状态,外界热量的漏入会引起LNG的蒸发,增加能耗,也可能会使储罐产生分层及翻滚现象,对其安全造成较大威胁,因此,需要对它的绝热性能及保冷系统进行研究。为此,根据全容式LNG储罐的结构特点,分别对罐顶、罐壁和罐底进行了漏热量计算,结合实例进行了LNG储罐总漏热量及日蒸发率的计算分析,探讨了LNG储罐的绝热性能,找到了影响储罐漏热量的主要因素:保冷材料的导热系数、保冷层的厚度、储罐表面的吸收率、环境温度等,为LNG储罐保冷系统的设计提供了相关依据;并根据LNG储罐保冷系统的需要,归纳总结了保冷材料的选择原则、施工方法及其注意事项。  相似文献   

18.
LNG储罐外墙温度应力分析及预应力筋设计   总被引:1,自引:0,他引:1  
程旭东  朱兴吉 《石油学报》2012,33(3):499-505
大型LNG储罐的外墙一般由预应力混凝土建造,其应力分布及变形比较复杂。在介绍预应力混凝土外墙温度应力计算方法的基础上,采用理论分析的方法,推导出了圆筒形外墙温度应力的计算公式、外墙在温差荷载及其他普通荷载作用下预应力筋的计算公式以及最大环向应力所在位置计算公式,进而给出了预应力筋结构调整的方案。研究结果表明,内罐的超低温液体会使预应力混凝土外墙产生很大的温度应力,环向温度应力最大可达混凝土抗拉强度的一半,使外墙在受内压时更加危险,因此在环向预应力筋设计时须考虑温差荷载影响。而后采用ADINA有限元软件建立多个钢筋混凝土分离式模型进行数值模拟,不仅验证了所推导公式的正确性,而且证明了该结构优化方案使外墙的变形及应力分布更加合理。  相似文献   

19.
吴创明 《天然气工业》2006,26(8):126-129
LNG供气站的安全、规范操作是稳定、可靠供气的前提和保障。供气站正式投运前须用液氮对工艺系统进行干燥、预冷、置换。控制预冷速度、进液速度、储罐压力、预冷时间,可防止产生较大的冷收缩和温差应力而损坏设备与工艺管道。利用自力式增压调节阀为储罐自动增压可保证LNG储罐的平稳操作和安全供气。储罐正常工作压力由增压阀的开启压力与关闭压力所控制,储罐的允许最高工作压力由自力式减压阀的开启压力所控制,为保证增压阀和减压阀工作时互不干扰,增压阀的关闭压力与减压阀的开启压力区间应大于等于0.05 MPa。储罐上安装自力式减压阀、压力报警手动放空、安全阀起跳三级安全保护装置是防止储罐超压运行的有效措施。测满口和差压式液位计对保证储罐的安全充装至关重要。液位计接头须采用同种材料以防止冷收缩量不同导致螺纹连接副松动引起LNG泄漏。密度不同会导致静置的LNG产生翻滚引发超压事故,定期倒罐可防止LNG翻滚事故。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号