共查询到19条相似文献,搜索用时 78 毫秒
1.
随着社交网络的兴起,使越来越多的用户针对各类事件更加方便的表达自己的观点。为了发现用户对于某个事件的态度,面向文本信息的情感倾向性分析逐步成为一个研究热点。已有的研究方法大多是根据手工标注好的情感词典,对文本信息使用朴素贝叶斯、支持向量机、最大熵方法等机器学习算法进行情感分析。但是,通过手工方式建立情感词典是一项费时费力的工作,为了避免对情感词典的依赖,本文提出基于卷积神经网络和注意力模型相结合的方法进行文本情感分析的研究。实验表明,本文提出的相关方法较已有的机器学习方法与单纯的卷积神经网络方法较明显的提高。 相似文献
2.
情感分类对推荐系统、自动问答、阅读理解等下游应用具有重要应用价值,是自然语言处理领域的重要研究方向。情感分类任务直接依赖于上下文,包括全局和局部信息,而现有的神经网络模型无法同时捕获上下文局部信息和全局信息。文中针对单标记和多标记情感分类任务,提出一种循环卷积注意力模型(LSTM-CNN-ATT,LCA)。该模型利用注意力机制融合卷积神经网络(Convolutional Neural Network,CNN)的局部信息提取能力和循环神经网络(Recurrent Neural Network,RNN)的全局信息提取能力,包括词嵌入层、上下文表示层、卷积层和注意力层。对于多标记情感分类任务,在注意力层上附加主题信息,进一步指导多标记情感倾向的精确提取。在两个单标记数据集上的F1指标达到82.1%,与前沿单标记模型相当;在两个多标记数据集上,小数据集实验结果接近基准模型,大数据集上的F1指标达到78.38%,超过前沿模型,表明LCA模型具有较高的稳定性和较强的通用性。 相似文献
3.
针对现有文本情感分析方法在对文本中词位置、结合上下文以及深层次情感词提取中存在的不足,提出一种模型。利用扩展卷积网络将词或字符编码矩阵转化为向量;扩展卷积以并行卷积核实现增加词之间的位置信息,使词与词之间联系更加紧密;在模型中融合双向GRU网络增加下文信息的影响;利用自注意力机制分配深层次信息的权重,增加词在整句话中的语义信息;将不同权重的文本信息特征放入到softmax层进行文本分类。实验结果表明,该模型在数据集IMDB、SSTB上的准确率比同类模型更高。 相似文献
4.
特定目标情感分析作为情感分析一个重要的子任务,近年来得到越来越多研究人员的关注.针对在特定目标情感分析中,将注意力机制和LSTM等序列性输入网络相结合的网络模型训练时间长、且无法对文本进行平行化输入等问题,提出一种基于多注意力卷积神经网络(multi-attention convolution neural networks, MATT-CNN)的特定目标情感分析方法.相比基于注意力机制的LSTM网络,该方法可以接收平行化输入的文本信息,大大降低了网络模型的训练时间.同时,该方法通过结合多种注意力机制有效弥补了仅仅依赖内容层面注意力机制的不足,使模型在不需要例如依存句法分析等外部知识的情况下,获取更深层次的情感特征信息,有效识别不同目标的情感极性.最后在SemEval2014数据集和汽车领域数据集(automotive-domain data, ADD)进行实验,取得了比普通卷积神经网络、基于单注意力机制的卷积神经网络和基于注意力机制的LSTM网络更好的效果. 相似文献
5.
在篇章级的情感分类中由于篇章级文本较长,特征提取较普通句子级分析相对较难,大多方法使用层次化的模型进行篇章文本的情感分析,但目前的层次化模型多以循环神经网络和注意力机制为主,单一的循环神经网络结构提取的特征不够明显。本文针对篇章级的情感分类任务,提出一种层次化双注意力神经网络模型。首先对卷积神经网络进行改进,构建词注意力卷积神经网络。然后模型从两个层次依次提取篇章特征,第一层次使注意力卷积神经网络发现每个句子中的重要词汇,提取句子的词特征,构建句子特征向量;第二层次以循环神经网络获取整个篇章的语义表示,全局注意力机制发现篇章中每个句子的重要性,分配以不同的权重,最后构建篇章的整体语义表示。在IMDB、YELP 2013、YELP 2014数据集上的实验表明,模型较当前最好的模型更具优越性。 相似文献
6.
《计算机应用与软件》2017,(4)
微博是互联网舆论演化的重要平台,对微博进行情感分析,有助于及时掌握社会热点和舆论动态。由于微博数据内容简短、特征稀疏、富含新词等特征,微博情感分类依然是一个较难的任务。传统的文本情感分类方法主要基于情感词典或者机器学习等,但这些方法存在数据稀疏的问题,而且忽略了词的语义、语序等信息。为了解决上述问题,提出一种基于卷积神经网络的中文微博情感分类模型CNNSC,实验表明相比目前的主流方法,CNNSC的准确率提高了3.4%。 相似文献
7.
2008年,中科院张松懋研究员提出了将3D动画自动生成技术应用在手机短信中.短信情感分析是手机3D动画自动生成系统的一个重要环节.目前系统中使用的方法是传统的机器学习方法,准确率较低,无法达到实用的目的.而近几年,深度学习在情感分析任务中取到了较好的效果,卷积神经网络可以自动提取短信中的语义情感特征,且注意力机制可以自动为词加权获取信息.为此,本文提出将深度学习中的注意力机制和卷积神经网络相结合应用于手机短信自动生成系统中的情感分类.实验表明,基于注意力机制的卷积神经网络比之前的方法准确率、召回率和F值都有明显的提高. 相似文献
8.
微博情感分析旨在研究用户关于热点事件的情感观点,研究表明深度学习在微博情感分析上具有可行性。针对传统卷积神经网络进行微博情感分析时忽略了非连续词之间的相关性,为此将注意力机制应用到卷积神经网络(CNN)模型的输入端以改善此问题。由于中文微博属于短文本范畴,卷积神经网络前向传播过程中池化层特征选择存在丢失过多语义特征的可能性,为此在卷积神经网络的输出端融入树型的长短期记忆神经网络(LSTM),通过添加句子结构特征加强深层语义学习。在两种改进基础上构造出一种微博情感分析模型(Att-CTL),实验表明该模型在微博情感分析上具有优良的特性,尤其在极性转移方面仍保持较高的F1值。 相似文献
10.
文本情感分析是自然语言处理的经典领域之一.文中提出了一种基于transformer特征抽取器联合多通道卷积神经网络的文本情感分析的模型.该模型使用transformer特征提取器在传统Word2vector,Glove等方式训练的静态词向量的基础上来进行单词的分层、动态表示,针对特定数据集采用Fine-Tuning方式... 相似文献
11.
目前基于词嵌入的卷积神经网络文本分类方法已经在情感分析研究中取得了很好的效果。此类方法主要使用基于上下文的词嵌入特征,但在词嵌入过程中通常并未考虑词语本身的情感极性,同时此类方法往往缺乏对大量人工构建情感词典等资源的有效利用。针对这些问题,该文提出了一种结合情感词典和卷积神经网络的情感分类方法,利用情感词典中的词条对文本中的词语进行抽象表示,在此基础上利用卷积神经网络提取抽象词语的序列特征,并用于情感极性分类。该文提出的相关方法在中文倾向性分析评测COAE2014数据集上取得了比目前主流的卷积神经网络以及朴素贝叶斯支持向量机更好的性能。 相似文献
12.
微博情感倾向性分析旨在发现用户对热点事件的观点态度。由于微博噪声大、新词多、缩写频繁、有自己的固定搭配、上下文信息有限等原因,微博情感倾向性分析是一项有挑战性的工作。该文主要探讨利用卷积神经网络进行微博情感倾向性分析的可行性,分别将字级别词向量和词级别词向量作为原始特征,采用卷积神经网络来发现任务中的特征,在COAE2014任务4的语料上进行了实验。实验结果表明,利用字级别词向量及词级别词向量的卷积神经网络分别取得了95.42%的准确率和94.65%的准确率。由此可见对于中文微博语料而言,利用卷积神经网络进行微博情感倾向性分析是有效的,且使用字级别的词向量作为原始特征会好于使用词级别的词向量作为原始特征。 相似文献
13.
该文提出了一种以商品评论为对象的基于语义融合的跨语言情感分类算法。该算法首先从短文本语义表示的角度出发,基于开源工具Word2Vec预先生成词嵌入向量来获得不同语言下的信息表示;其次,根据不同语种之间的词向量的统计关联性提出使用自联想记忆关系来融合提取跨语言文档语义;然后利用卷积神经网络的局部感知性和权值共享理论,融合自联想记忆模型下的复杂语义表达,从而获得不同长度的短语融合特征。深度神经网络将能够学习到任意语种语义的高层特征致密组合,并且输出分类预测。为了验证算法的有效性,将该模型与最新几种模型方法的实验结果进行了对比。实验结果表明,此模型适用于跨语言情感语料正负面情感分类,实验效果明显优于现有的其他算法。 相似文献
14.
近年来,深度学习在情感分析任务中的应用得到了越来越多的关注.针对以文本词向量作为输入的卷积神经网络无法充分利用情感分析任务中特有的情感特征信息,以及难以有效表示每个词语在句子中的重要程度等问题,提出一种基于多通道卷积神经网络(multi-channels convolutional neural networks, MCCNN)的中文微博情感分析模型.该模型针对情感分析任务中特有的情感信息来构建文本输入矩阵,使模型在训练过程中有效获取输入句子的情感特征信息.同时,该模型通过将不同特征信息结合形成不同的网络输入通道,使网络模型在训练过程中从多方面的特征表示来学习输入句子的情感信息,有效表示出每个词语在句子中的重要程度,获取更多的隐藏信息.最后在COAE2014数据集和微博语料数据上进行实验,取得了比普通卷积神经网络、结合情感信息的卷积神经网络和传统分类器更好的性能. 相似文献
15.
目前基于端到端的卷积神经网络在文本情感分析中大量应用,但是其缺乏对罕见词的处理以及对不同领域的泛化性.基于此提出了一种加入词典特征以及词性特征进行特征增强的卷积神经网络模型——多特征改进卷积神经网络模型.首先采用字特征、词典特征以及词性特征表示句子向量,其次采用分段多池操作抽取重要特征,最后采用投票机制判段文本的情感倾... 相似文献
16.
17.
18.
针对双向门控循环神经网络(BiGRU)无法获取文本局部特征,卷积神经网络(CNN)无法聚焦文本全局特征的问题,提出一种字词融合的双通道混合神经网络文本情感分析模型(CW_BGCA).首先,将文本分别用字符级词向量和词语级词向量表示;然后使用门控循环神经网络和卷积神经网络结合的混合神经模型分别从字向量和词向量中提取隐层特... 相似文献