共查询到18条相似文献,搜索用时 78 毫秒
1.
文本自动摘要的方法研究 总被引:1,自引:0,他引:1
文本自动摘要能够对文献进行提炼、浓缩,使人们快速准确的了解文献内容。本文介绍了文本自动摘要的原理和四种方法:基于统计的自动摘要、基于理解的自动摘要、基于信息抽取的自动摘要和基于结构的自动摘要。 相似文献
2.
针对自然语言处理(NLP)生成式自动摘要领域的语义理解不充分、摘要语句不通顺和摘要准确度不够高的问题,提出了一种新的生成式自动摘要解决方案,包括一种改进的词向量生成技术和一个生成式自动摘要模型。改进的词向量生成技术以Skip-Gram方法生成的词向量为基础,结合摘要的特点,引入词性、词频和逆文本频率三个词特征,有效地提高了词语的理解;而提出的Bi-MulRnn+生成式自动摘要模型以序列映射(seq2seq)与自编码器结构为基础,引入注意力机制、门控循环单元(GRU)结构、双向循环神经网络(BiRnn)、多层循环神经网络(MultiRnn)和集束搜索,提高了生成式摘要准确性与语句流畅度。基于大规模中文短文本摘要(LCSTS)数据集的实验结果表明,该方案能够有效地解决短文本生成式摘要问题,并在Rouge标准评价体系中表现良好,提高了摘要准确性与语句流畅度。 相似文献
3.
4.
5.
6.
自动文本摘要技术旨在凝练给定文本,以篇幅较短的摘要有效反映出原文核心内容.现阶段,生成型文本摘要技术因能够以更加灵活丰富的词汇对原文进行转述,已成为文本摘要领域的研究热点.然而,现有生成型文本摘要模型在产生摘要语句时涉及对原有词汇的重组与新词的添加,易造成摘要语句不连贯、可读性低.此外,通过传统基于已标注数据的有监督训... 相似文献
7.
多文本摘要的目标是对给定的查询和多篇文本(文本集),创建一个简洁明了的摘要,要求该摘要能够表达这些文本的关键内容,同时和给定的查询相关。一个给定的文本集通常包含一些主题,而且每个主题由一类句子来表示,一个优秀的摘要应该要包含那些最重要的主题。如今大部分的方法是建立一个模型来计算句子得分,然后选择得分最高的部分句子来生成摘要。不同于这些方法,我们更加关注文本的主题而不是句子,把如何生成摘要的问题看成一个主题的发现,排序和表示的问题。我们首次引入dominant sets cluster(DSC)来发现主题,然后建立一个模型来对主题的重要性进行评估,最后兼顾代表性和无重复性来从各个主题中选择句子组成摘要。我们在DUC2005、2006、2007三年的标准数据集上进行了实验,最后的实验结果证明了该方法的有效性。 相似文献
8.
文本自动摘要技术在网页搜索和网页内容推荐等多个领域都有着非常广阔的应用前景。经典的文本摘要算法采用统计学的方法来提取文章关键字,进而提取主题句。这种方法在一定程度上忽略了文本的语义和语法信息。近年来,分布式词向量嵌入技术已经应用到文本检索当中,基于该技术提出了一种词向量化的自动文本摘要方法,该方法主要分为4个步骤:词向量生成、基于词向量的段向量生成、关键词提取和主题句抽取,最终实现文本段落的自动摘要。实验结果表明,改进的文本自动摘要方法能够有效提取主题句。 相似文献
9.
10.
文本摘要模型的输入数据中通常包含被视为噪声的冗余信息,对输入数据中的噪声进行过滤可以提高摘要模型的表现.提出了基于动态路由指导的分层信息过滤(Dynamic Routing Based Hierarchical Informa-tion Filtering,DRBHIF)层,该层首先通过动态路由模块根据编码器的输出动态... 相似文献
11.
文本摘要成为人们从互联网上海量文本信息中便捷获取知识的重要手段。现有方法都是在特定数据集上进行训练和效果评价,包括一些公用数据集和作者自建数据集。已有综述文献对现有方法进行全面细致的总结,但大多都是对方法进行总结,而缺少对数据集的详细描述。该文从调研数据集的角度出发,对文本摘要常用数据集及在该数据集上的经典和最新方法进行综述。对公用数据集的综述包括数据来源、语言及获取方式等,对自建数据集的总结包括数据规模、获取和标注方式等。对于每一种公用数据集,给出了文本摘要问题的形式化定义。同时,对经典和最新方法在特定数据集上的实验效果进行了分析。最后,总结了已有常用数据集和方法的现状,并指出存在的一些问题。 相似文献
12.
Sheng-Luan Hou Xi-Kun Huang Chao-Qun Fei Shu-Han Zhang Yang-Yang Li Qi-Lin Sun Chuan-Qing Wang 《计算机科学技术学报》2021,36(3):633-663
Automatic text summarization (ATS) has achieved impressive performance thanks to recent advances in deep learning (DL) and the availability of large-scale corpora.The key points in ATS are to estimate the salience of information and to generate coherent results.Recently,a variety of DL-based approaches have been developed for better considering these two aspects.However,there is still a lack of comprehensive literature review for DL-based ATS approaches.The aim of this paper is to comprehensively review significant DL-based approaches that have been proposed in the literature with respect to the notion of generic ATS tasks and provide a walk-through of their evolution.We first give an overview of ATS and DL.The comparisons of the datasets are also given,which are commonly used for model training,validation,and evaluation.Then we summarize single-document summarization approaches.After that,an overview of multi-document summarization approaches is given.We further analyze the performance of the popular ATS models on common datasets.Various popular approaches can be employed for different ATS tasks.Finally,we propose potential research directions in this fast-growing field.We hope this exploration can provide new insights into future research of DL-based ATS. 相似文献
13.
自动文本的特征评价方法的研究一直未受到研究者们的重视。以往只是简单地将面向文本集的TF.IDF特征评价方法应用于针对单文本的自动文摘领域,该方法无法排除低频词噪音的影响,特征评价存在明显误差,致使不能准确计算文本特征。文章引入信息熵,提出了针对单文本的特征评价方法TF.IDF.H。实验表明,新的特征评价方法能够准确获得文章主题特征,更好地改善文摘质量。 相似文献
14.
Web文档的迅猛增长使Web文摘技术成了当今的一个研究热点。由于Web文档的特殊性,使得Web文摘不同于传统的文本自动文摘。本文分析了Web文档的特点;给出了Web文摘的定义;提出了基于句子抽取的Web文摘生成算法。算法中将每个Web句子权重分解为Web特征词权重和Web句子结构权重,并用机器学习的方法来计算二者所占的比重。Web特征词权重根据文档分类树图进行权值调整,Web句子结构权重充分考虑排版格式和超连接属性。通过对1000篇Web文档的文摘实验,证明文中所提Web文摘算法切实可行。 相似文献
15.
16.
当前长文本自动摘要任务缺乏充足的数据集,限制了该领域相关算法、模型的研究。数据增强是在不直接补充训练数据的情况下增加训练数据的方法。针对上述长文本自动摘要数据缺乏问题,基于CogLTX框架,该文提出了一种面向长文本自动摘要任务的数据增强方法EMDAM(Extract-Merge Data Augmentation Method)。EMDAM主要分为抽取和归并两个核心环节。首先,从原有长文本数据集中“抽取”得到若干短句;其次,将抽取出的短句按照定义顺序“归并”为长文本;最终形成满足限定条件的新增长文本数据集。与基线模型相比较,该文在PubMED_Min、CNN/DM_Min、news2016zh_Min数据集上采用增强策略能明显提高基线模型的性能;而在SLCTDSets上使用该文的数据集增强策略,最终的Rouge得分相比未使用增强策略的模型提高了近两个百分点。上述实验结果表明,EMDAM可以在小数据集上进行扩展,为文本摘要研究提供数据支持。 相似文献
17.
近年来,互联网技术的蓬勃发展极大地便利了人类的日常生活,不可避免的是互联网中的信息呈井喷式爆发,如何从中快速有效地获取所需信息显得极为重要.自动文本摘要技术的出现可以有效缓解该问题,其作为自然语言处理和人工智能领域的重要研究内容之一,利用计算机自动地从长文本或文本集合中提炼出一段能准确反映源文中心内容的简洁连贯的短文.探讨自动文本摘要任务的内涵,回顾和分析了自动文本摘要技术的发展,针对目前主要的2种摘要产生形式(抽取式和生成式)的具体工作进行了详细介绍,包括特征评分、分类算法、线性规划、次模函数、图排序、序列标注、启发式算法、深度学习等算法.并对自动文本摘要常用的数据集以及评价指标进行了分析,最后对其面临的挑战和未来的研究趋势、应用等进行了预测. 相似文献
18.
任务中的生成式摘要模型对原文理解不充分且容易生成重复文本等问题,提出将词向量模型ALBERT与统一预训练模型UniLM相结合的算法,构造出一种ALBERT-UniLM摘要生成模型。该模型采用预训练动态词向量ALBERT替代传统的BERT基准模型进行特征提取获得词向量。利用融合指针网络的UniLM语言模型对下游生成任务微调,结合覆盖机制来降低重复词的生成并获取摘要文本。实验以ROUGE评测值作为评价指标,在2018年CCF国际自然语言处理与中文计算会议(NLPC-C2018)单文档中文新闻摘要评价数据集上进行验证。与BERT基准模型相比,ALBERT-UniLM模型的Rouge-1、Rouge-2和Rouge-L指标分别提升了1.57%、1.37%和1.60%。实验结果表明,提出的ALBERT-UniLM模型在文本摘要任务上效果明显优于其他基准模型,能够有效提高文本摘要的生成质量。 相似文献