首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
在连续流动固定床加氢装置上,采用Ni W-P/Al_2O_3催化剂对高温煤焦油脱除大部分S、N、O后经蒸馏切割得到的芳烃质量分数较高的柴油馏分进行加氢精制,考察了反应温度、反应压力、液体体积空速和氢油体积比对芳烃脱除率和产物分布的影响,得到的最佳工艺条件为:反应温度为340℃,反应压力为8.0 MPa,液体体积空速为0.3 h~(-1),氢油体积比为1 500。结果表明,适宜的反应温度和氢油体积比、较高的反应压力和较低的液体体积空速有利于柴油馏分中芳烃的脱除,其脱除率达到70%以上。  相似文献   

2.
为实现柴油产品质量升级,选择抚顺石油化工研究院研制的新一代加氢精制催化剂FF-66替换原加氢精制催化剂FF-36,与加氢裂化催化剂FC-20组合使用生产国Ⅵ低凝柴油。结果表明,采用FF-66/FC-20组合催化剂处理催化柴油、焦化汽油和直馏柴油组成的混合原料(平均硫含量为2 742μg/g),标定工况下的柴油产品硫含量降低至4.5μg/g,氮含量降低至0.35μg/g,多环芳烃质量分数降低至3.3%,十六烷值提高了3.5个单位,凝点降至-24℃。说明FF-66/FC-20催化剂活性匹配良好,具有优异的脱硫、脱氮性能和十六烷值增值能力,能够满足柴油加氢改质异构降凝装置生产国Ⅵ低凝柴油的需求。  相似文献   

3.
利用固定床加氢反应装置,以Mo-Ni/Al_2O_3为催化剂,首次对ATP页岩干馏装置油回收系统得到的页岩重油,经脱水脱渣预处理后切割分离所得的页岩柴油馏分进行加氢精制研究,考查了反应温度、反应压力、体积空速以及氢油体积比对加氢精制效果的影响。结果表明,在320~380℃、4.0~8.0 MPa、LHSV 0.5~2.0 h~(-1)、V(H_2)/V(Oil)200~1 200的范围内,提高反应温度,增大反应压力,降低体积空速,有利于ATP页岩柴油馏分的脱硫、脱氮和烯烃饱和,可明显提高加氢脱氮效果,氢油比高于1 000之后,增加氢油比对加氢脱硫和脱氮影响较小;抚矿ATP页岩柴油馏分在反应温度380℃、反应压力8.0 MPa、体积空速0.5 h~(-1)、氢油体积比1 000的条件下,加氢精制后所得产物油的杂原子和不饱和烃含量低、密度小、芳香烃含量少,可作为优质清洁柴油直接使用。  相似文献   

4.
正一种蒽油加氢制柴油的方法,先将蒽油在含有第一催化剂的加氢反应区中反应,再将加氢反应区中所得产物油进入含有第二催化剂的加氢裂化反应区中反应制得柴油组分成品,本发明的优点在于:本发明的加氢精制催化剂在对煤焦油加氢脱硫、加氢脱氮、加氢脱氧的同时,能提高活性,使芳烃饱和及开环,并且由于催化剂中加入了助剂钾,抑制了煤焦油中易生焦物质的结焦堵塞反应器,提高了催化剂的  相似文献   

5.
多环芳烃加氢饱和既有利于环境保护,还能促进煤焦油的高效率利用。以煤焦油中(210~360)℃富含2-4环多环芳烃馏分为研究对象,采用加氢饱和催化剂与分子筛催化剂作为双效耦合催化剂,对不同反应条件下煤焦油催化加氢反应性能进行研究。结果表明,双效耦合催化剂具备分子筛催化剂与加氢饱和催化剂的催化特性,同时具备两者相互作用较小的稳态结构,且其在多环芳烃催化加氢反应中的活性介于分子筛催化剂和加氢饱和催化剂之间;活性金属组分Ni和Mo在催化剂表面分布稳定均匀。各操作条件对多环芳烃加氢性能存在不同程度的影响,双效耦合催化剂耦合比为4∶6时,多环芳烃催化加氢性能优于其他耦合比催化剂,在反应温度380℃、氢初压8.0 MPa、反应时间60 min和剂油比5∶100条件下,具有较好的加氢性能。馏分油多次选择性加氢后,饱和分量明显增加,胶质和芳香分量明显减少。  相似文献   

6.
离子液体脱氮-加氢精制处理高氮焦化汽柴油的研究
  总被引:1,自引:0,他引:1  
采用离子液体对高含氮焦化汽柴油进行脱氮预处理,确定了处理过程适宜脱氮预处理条件,并对预脱氮后焦化汽柴油进行加氢精制工艺评价。结果表明,离子液体预脱氮处理适宜条件为:剂油质量比1∶100,反应温度50 ℃,搅拌时间30 min,沉降时间1.0 h,此条件下,焦化汽柴油的碱氮脱除率为94.9%,且离子液体具有较好的重复使用性。在相同条件下,经预脱氮处理后的柴油与未处理柴油相比,加氢生成油中硫、氮和芳烃含量明显降低,尤其是氮含量低,氮化物的含量高低对催化剂的加氢精制性能有影响。采用离子液体脱氮-加氢精制可深度脱除焦化汽柴油中硫化物与氮化物,降低芳烃含量,改善产品质量,达到生产低硫和低芳烃清洁燃料的目的。
  相似文献   

7.
将催化裂化柴油转化为轻质芳烃既能解决柴油过剩,又能解决轻质芳烃短缺问题,具有较高的应用价值.总结催化裂化柴油加氢裂化制备轻质芳烃的相关技术,介绍芳烃(三环芳烃、双环芳烃和单环芳烃)的加氢裂化反应规律,分析催化剂中加氢活性组分的性质(种类、负载量、分散度和配比)、分子筛载体的性质(酸性质、孔道结构和酸中心化学环境)及两种...  相似文献   

8.
采用加氢预精制催化剂、加氢精制催化剂、加氢裂化催化剂以及加氢饱和催化剂适宜的级配方式对高温煤焦油馏分油进行二段加氢改质,结果表明,高温煤焦油馏分油的性质经加氢改质后得到大幅度改善,密度由1 169.7kg/m3降低到900.9kg/m3以下,氢碳原子比由0.79提高到1.63以上,残炭降低到0.02%(质量分数);其石脑油馏分的硫、氮含量分别小于5μg/g和1μg/g,芳烃潜含量大于68%(质量分数),是催化重整的优质原料;其柴油馏分的硫含量很低,凝点和冷滤点均小于-30℃,十六烷值大于39,是国Ⅳ低凝柴油的优质调和组分;而加氢尾油基本由芳烃组成,不宜作为催化裂化的原料.  相似文献   

9.
曹均丰  柳伟  廖杰峰  谢文杰  黄薇 《当代化工》2021,50(8):1897-1899,1904
采用FRIPP研制的加氢精制催化剂和轻油型加氢裂化催化剂体系,在中型加氢裂化试验装置上,以高芳烃质量分数催化柴油为原料进行了中试试验,研究了精制催化柴油不同的芳烃质量分数与加氢裂化产品性质变化规律,并预测了不同的芳烃质量分数精制催化柴油加氢裂化产品的性质.结果表明:在裂化催化剂体积空速1.5 h-1、反应总压8.0 MPa、氢油体积比800:1等工艺条件下,随着精制催化柴油芳烃质量分数的提高,汽油馏分产品收率明显降低,而柴油馏分产品收率明显提高,化学氢耗明显降低,汽油馏分芳烃质量分数和辛烷值都明显提高,柴油馏分凝点升高,柴油馏分十六烷指数降低.以此数据建立了六级总动力学模型,实现了汽油馏分产品收率、柴油馏分产品收率、加氢裂化反应化学氢耗、汽油馏分芳烃质量分数、汽油馏分辛烷值、柴油馏分凝点和柴油馏分十六烷指数等产品性质的预测.通过对模型参数的调整,该模型较好地预测了不同芳烃质量分数精制催化柴油加氢裂化产品的性质,预测误差均在5%以内.  相似文献   

10.
为了提高产品质量、降低柴汽比、增产化工原料,将350万t/a柴油加氢精制装置改造为300万t/a柴油加氢裂化装置,采用A公司HDS催化剂体相催化剂及加氢裂化催化剂级配来实现柴油加氢超深度脱硫时增产化工原料,装置改造中反应系统改动较少,主要集中在分馏部分。标定数据表明,加工直馏柴油工况,反应压力7. 35 MPa,催化剂床层平均温度为340. 2℃,重石脑油硫含量0. 1μg/g,氮含量0. 3μg/g,重石脑油收率达到17. 82%,喷气燃料冰点为-55. 9℃,烟点为28. 5 mm,精制柴油硫含量5. 5μg/g,多环芳烃0. 8%,达到国Ⅵ柴油标准。在多掺炼20%催化柴油工况,床层平均温度提高11℃,重石脑油收率达到12. 98%,重石脑油质量可满足重整料要求,精制柴油达到国Ⅵ柴油标准。  相似文献   

11.
采用SSY型分子筛、不同硅铝比Beta分子筛与大孔氢氧化铝干胶混捏制备SSY-Beta-Al_2O_3载体,等体积浸渍法制备Ni-W/SSY-Beta-Al_2O_3加氢转化催化剂,采用BET、Py-IR、XRD、NH_3-TPD对制备的催化剂及载体进行表征。在100 mL固定床加氢装置上,工业Ni-Mo型柴油加氢精制催化剂与Ni-W/SSY-Beta-Al_2O_3加氢转化催化剂级配装填,以劣质催化裂化柴油为原料,对加氢转化催化剂进行活性评价。结果表明,随着Beta分子筛硅铝比的增加,催化剂表面的L酸中心先减少后增多,B酸中心先增加后减少,催化剂的弱酸酸量先增多后减少,中强酸与强酸酸量变化不明显。在氢油体积比700∶1、反应压力8.0 MPa、精制段反应温度360℃,体积空速1.25 h^(-1),转化段反应温度400℃,体积空速1.35 h^(-1)的条件下,CYB-3催化剂加氢转化产品液相收率高达97.73%,汽油馏分收率63.72%,辛烷值91.66,柴油馏分收率33.69%,十六烷值比原料提高8.96,凝点小于-35℃。  相似文献   

12.
利用Pt/Y催化剂,在固定床反应器中,温度380℃、压力3 MPa、氢油体积比1000及质量空速1.0 h-1条件下,分别采用加氢处理的全馏分和轻馏分催柴为原料制备苯、甲苯和二甲苯(BTX),获得(C6+C7+C8)芳烃的总选择性分别为9.4%和33.9%。对原料和液体产物进行的气相色谱和质谱分析表明,BTX主要经过重芳烃的加氢饱和、裂解等反应生成,中间物质为烷基苯、四氢萘、茚满及茚类等单环芳烃。通过对反应原料以及对反应前后催化剂的N2吸脱附、NH3-TPD、XRD衍射图谱、TG等物化性质的表征,分析催化剂失活的主要原因。即全馏分催柴原料中高含量的S、N化合物快速吸附造成了催化剂中毒,而轻馏分原料中S、N化合物在催化剂表面的缓慢积累覆盖活性位,造成催化剂逐渐失活。  相似文献   

13.
以改性的Beta分子筛为酸性组元,W、Ni为活性金属组分,采用等体积浸渍法制备加氢裂化催化剂。在中压条件下对制备的加氢裂化催化剂进行活性评价,考察反应温度、反应压力及空速对催化性能的影响,结果表明,在反应温度376℃、反应压力10 MPa和空速1.0 h-1条件下,催化剂活性及选择性达到最佳。  相似文献   

14.
开发了一种通过正构生物烷烃在Pt/ZSM-5催化剂上的选择性加氢裂化来制备高品质液体生物燃料的新方法.生产得到的液体生物燃料包含了煤油、汽油和柴油,分离后可直接作为航空燃料或车用燃料使用.以商业ZSM-5分子筛为载体,制备和表征了不同组成的Pt/ZSM-5催化剂.采用转化率、煤汽比和异构率为指标,考察了温度、压力和空速等条件对反应的影响,比较了不同组成时催化剂的催化性能.结果表明:对于同一催化剂,裂化产物异构率随转化率增加而增加;除转化率外,异构率还与酸性位的烯烃被覆度相关;当采用0.7%Pt/ZSM-5(硅铝比50)为催化剂时,在4MPa、320℃、1h-1、氢油体积比1500:1的反应条件下,原料转化率即可达到82%,产物中煤油含量为43.6%,异构率为1.29,汽油含量为38.0%.  相似文献   

15.
中国石油化工股份有限公司金陵分公司加氢裂化装置运行至末期,产品变压器油中多环芳烃含量增加且颜色较深,造成销售困难;本文介绍了利用NJBMZDA-II催化剂针对加氢裂化变压器油开展的产品提质试验情况,结果表明在反应温度150℃、空速为3.0 h~(-1)、压力为3.0 MPa、氢油体积比500∶1的条件下,原料中总芳烃含量降低了13%,其中稠环芳烃含量降低为0.6%,产品赛氏比色提高了7个单位;利用公司尾油异构化装置工业应用情况表明,在空速2.68 h~(-1)、反应温度178℃、反应压力2.95 MPa、氢油体积比305∶1工况下,变压器油稠环芳烃含量、油品色泽等指标都能达到产品指标。  相似文献   

16.
制备Co-Mo/TiO2-Al2O3催化剂并用于废润滑油加氢精制.结果表明,在反应温度340℃、反应压力7.0 MPa、体积空速1.2 h-1、氢油体积比600:1的反应条件下,加氢精制油品的粘度指数提高了21,S含量14.4μg·g-1,N含量8.0μg·g-1,Cl含量<0.1μg·g-1,色度0.4,收率96.5...  相似文献   

17.
张守运 《工业催化》2018,26(9):61-63
介绍中国石化抚顺石油化工研究院开发的C_6馏分选择性加氢催化剂在550 kt·a-1苯抽提蒸馏装置原料预处理C_6馏分选择性加氢单元的工业应用。结果表明,C_6馏分选择性加氢脱烯烃工艺替代传统白土精制工艺,C_6馏分原料溴指数为(7 500~12 000) mg-Br·(100g)^(-1),在反应器入口温度130℃、入口压力1.8 MPa、氢油体积比250∶1~280∶1和空速2.5 h^(-1)条件下,反应产物溴指数小于5 mg-Br·(100g)^(-1),且芳烃损失接近于0,达到国内同类装置先进水平。  相似文献   

18.
介绍了PHF-101型柴油加氢精制催化剂在中国石油乌鲁木齐石化分公司2.0 Mt·a~(-1)柴油加氢装置的工业应用情况,结果表明,在反应器入口压力7.83 MPa、空速1.84 h~(-1)、平均温度358℃和氢油体积比476∶1条件下,加工硫含量1 835μg·g~(-1)的混合汽油和柴油原料,精制柴油硫含量4.8μg·g~(-1),十六烷值提高4.0个单位。PHF-101型催化剂加氢性能优良,运转稳定性良好,满足国Ⅳ和国Ⅴ柴油生产需求。  相似文献   

19.
以中低温煤焦油360℃的馏分油为原料,Ni-Mo/γ-Al2O3为催化剂,在小型固定床单管加氢反应器上进行加氢实验。在压力13 MPa、空速0.4 h-1、氢油体积比1 700∶1和反应温度370℃工艺条件下进行催化加氢反应,通过对原料油和加氢产物的GC-MS的检测结果分析,确定了酚类、萘类、联苯类和菲类化合物的加氢转化路径,得到煤焦油馏分油中主要化合物的加氢反应网络。  相似文献   

20.
以油浆抽提得到的重质芳烃油为原料,通过选择性加氢工艺降低其中有害的稠环芳烃(PAHs)化合物,得到的精制油为橡胶用环保芳烃油。实验分别对反应温度、压力、时间以及一段、二段加氢工艺对PAHs转化率的影响进行了考察,同时运用BET及EDS对2种硫化态催化剂进行了表征,以考察催化剂的活性及选择性。结果表明,Ni-W/γ-Al2O3催化剂活性及选择性较Ni-Mo/γ-Al2O3高。实验证明:通过选择性加氢可大幅度降低重质芳烃油中PAHs质量分数,一段加氢采用Ni-W/γ-Al2O3催化剂,在反应温度280℃、压力8 MPa、时间6 h的条件下,原料PAHs转化率达到46.24%;二段加氢采用Ni-Mo/γ-Al2O3催化剂,在与一段相同的反应条件下,PAHs转化率达到32.94%。经2段加氢后,产物中PAHs质量分数由起始的58.13%降到21.05%,总转化率达到63.79%,液体总收率91.72%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号