首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为了提高小样本数据模型的稳定性,构建具有更高精度和鲁棒性的小麦条锈病遥感探测模型.首先基于辐亮度和反射率荧光指数方法提取了冠层日光诱导叶绿素荧光(SIF)数据,然后结合对小麦条锈病病情严重度敏感的反射率光谱指数并基于改进的分类与回归树(CART)——梯度提升回归树(GBRT)算法,构建了融合反射率和冠层SIF数据的小麦...  相似文献   

2.
Chlorophyll content can be used as an indicator to monitor crop diseases. In this article, an experiment on winter wheat stressed by stripe rust was carried out. The canopy reflectance spectra were collected when visible symptoms of stripe rust in wheat leaves were seen, and canopy chlorophyll content was measured simultaneously in laboratory. Continuous wavelet transform (CWT) was applied to process the smoothed spectral and derivative spectral data of winter wheat, and the wavelet coefficient features obtained by CWT were regarded as the independent variable to establish estimation models of chlorophyll content. The hyperspectral vegetation indices were also regarded as the independent variable to build estimation models. Then, two types of models above-mentioned were compared to ascertain which type of model is better. The cross-validation method was used to determine the model accuracies. The results indicated that the estimation model of chlorophyll content, which is a multivariate linear model constructed using wavelet coefficient features extracted by Mexican Hat wavelet function processing the smoothed spectrum (WSMH1 and WSMH2), is the best model. It has the highest estimation accuracy with modelled coefficient of determination (R2) of 0.905, validated R2 of 0.913, and root mean square error (RMSE) of 0.288 mg fg?1. The univariate linear model built by wavelet coefficient feature of WSMH1 is secondary and the modelled R2 is 0.797, validated R2 is 0.795, and RMSE is 0.397 mg fg?1. Both estimation models are better than those of all hyperspectral vegetation indices. The research shows that the feature information of canopy chlorophyll content of winter wheat can be captured by wavelet coefficient features which are extracted by the method of CWT processing canopy reflectance spectrum data. Therefore, it could provide theoretical support on detecting diseases of crop by remote sensing quantitatively estimating chlorophyll content.  相似文献   

3.
小麦条锈病是导致小麦大规模减产的气传性病害,其传播扩散过程受多种因素影响,常用的作物病害气象预测模型难以准确模拟。为实现小麦条锈病发病率的精准预测,提出一种基于气象和遥感数据建立的SEIR-StripeRust动态预测模型。以甘肃省陇南地区为研究区,首先基于气象数据和MODIS遥感数据分别构建气象因子和植被指数,然后与发病率进行相关性分析筛选敏感因子并耦合基本感染率,进而建立SEIR-StripeRust模型,最后采用后向传播神经网络(BPNN)、支持向量回归(SVR)和多元线性回归(MLR)模型对比验证SEIR-StripeRust模型的有效性。结果表明:平均气温、相对湿度和归一化植被指数与小麦条锈病发病率显著相关,其建立的SEIRStripeRust模型预测精度最高,决定系数R2达到0.79,均方根误差RMSE为0.10,平均绝对误差MAE为0.09,均优于相同特征变量下的BPNN、SVR和MLR模型。研究结果表明SEIRStripeRust模型能够有效预测小麦条锈病发病率,并为县域尺度的小麦条锈病预测和精确防控提供技术支持。  相似文献   

4.
遥感提取叶绿素含量的方法是精准农业的重要研究方向之一,但是如何用冠层光谱数据有效地提取叶绿素含量仍然是一个难点。本文用光谱指数TCARI和OSAVI的组合建立提取冬小麦冠层叶绿素含量的关系式,并使用实验田获取的冬小麦冠层光谱以及与之同步的机载高光谱传感器OMIS数据进行了验证。通过误差分析讨论了该方法用于遥感高光谱数据时需要注意的问题,表明大气校正的精度,传感器的信噪比以及波段中心的漂移是模型反演精度的主要制约因素。  相似文献   

5.
复杂背景下小麦叶部病害图像分割方法研究   总被引:1,自引:0,他引:1  
针对复杂背景下小麦叶部病害图像分割问题,以小麦条锈病、叶锈病为研究对象,提出一种结合K-means聚类、Otsu阈值法等多种方法的分割策略。主要分三个步骤将小麦病斑图像分割出来:首先,利用背景与叶片a*b*分量的差异性,采用K-means聚类分割方法,去除泥土、杂草、阴影等背景,分割出小麦植株图像;其次,利用Otsu动态阈值法进行二值化处理,并结合数学形态学运算及面积阈值法分割出带有病斑的主要小麦病害叶片图像;最后,采用K-means算法对小麦病害叶片图像进行聚类运算,最终分割出小麦病斑图像。利用该方法进行分割实验,分割准确率达到95%以上,分割效果理想,为小麦叶部病害图像分割提供了参考,也为后续的小麦病害识别和诊断提供了基础。  相似文献   

6.
主成分分析在小麦条锈病预测中的应用   总被引:2,自引:0,他引:2  
影响因子过多,不但会引起数据"维爆炸",而且会降低预测精确度,为了解决该问题建立了基于主成分分析的BP神经网络模型.首先阐述了主成分分析法的原理与步骤,然后分析了陕西省汉中地区1974~1997年小麦条锈病病情及相关气象资料,得出影响其流行的主要成分,最后利用得到的主要成分作为BP神经网络的输入,对汉中地区1994~1997年小麦条锈病流行情况进行预测,并与未进行主分分析而建立的全要素BP网络模型进行比较.实验结果表明,该模型可以快速准确地预测小麦条锈病的流行程度,有效地减少小麦产量损失.  相似文献   

7.
Recent studies have demonstrated that solar-induced chlorophyll fluorescence (SIF) can offer a new way for directly estimating the terrestrial gross primary production (GPP). The main objective of this study is to investigate whether the red or far-red SIF is a better indicator of GPP using both simulations by the SCOPE model (Soil Canopy Observation, Photochemistry and Energy fluxes) and the observations of winter wheat at the canopy level. The results showed that: (1) both far-red SIF and GPP increased with leaf area index (LAI), whereas the red SIF quickly reached its saturation with an LAI value of 2 due to the strong reabsorption effect; (2) the diurnal GPP could be robustly estimated from the SIF spectra for winter wheat at each growth stage, whereas the correlation weakened greatly at the red band if all the observations made at different growth stages or all the simulations with different LAI values were pooled together – a situation that did not occur at the far-red band; (3) the SIF-based GPP models derived from the 2016 observations were well validated using the data set from 2015, with a root mean square error (RMSE) value of 0.128 and 0.133 (mg m?2 s?1) at the oxygen-A (O2-A) band and oxygen-B (O2-B) band, respectively. Therefore, the far-red SIF may be more reliable for mapping GPP for remote-sensing applications with heterogeneous and diverse vegetation growth conditions.  相似文献   

8.
Remote sensing is a promising tool that provides quantitative and timely information for crop stress detection over large areas. Nitrogen (N) is one of the important nutrient elements influencing grain yield and quality of winter wheat (Triticum aestivum L.). In this study, canopy spectral parameters were evaluated for N status assessment in winter wheat. A winter wheat field experiment with 25 different cultivars was conducted at the China National Experimental Station for Precision Agriculture, Beijing, China. Wheat canopy spectral reflectance over 350–2500 nm at different stages was measured with an ASD FieldSpec Pro 2500 spectrometer (Analytical Spectral Devices, Boulder, CO, USA) fitted with a 25° field of view (FOV) fibre optic adaptor. Thirteen narrow-band spectral indices, three spectral features parameters associated with the absorption bands centred at 670 and 980 nm and another three related to reflectance maximum values located at 560, 920, 1690 and 2230 nm were calculated and correlated with leaf N concentration (LNC) and canopy N density (CND). The results showed that CND was a more sensitive parameter than LNC in response to the variation of canopy-level spectral parameters. The correlation coefficient values between LNC and CND, on the one hand, and narrow-band spectral indices and spectral features parameters, on the other hand, varied with the growth stages of winter wheat, with no predominance of a single spectral parameter as the best variable. The differences in correlation results for the relationships of CND and LNC with narrow-band spectral indices and spectral features parameters decreased with wheat plant developing from Feekes 4.0 to Feekes 11.1. The red edge position (REP) was demonstrated to be a good indicator for winter wheat LNC estimation. The absorption band depth (ABD) normalized to the area of absorption feature (NBD) at 670 nm (NBD670) was the most reliable indicator for winter wheat canopy N status assessment.  相似文献   

9.
基于时序定量遥感的冬小麦长势监测与估产研究   总被引:1,自引:1,他引:1       下载免费PDF全文
遥感技术是高效、客观监测农作物生长状态的重要手段,对农业生产管理具有重要意义。以安徽龙亢农场为研究区,收集了中高分辨率多源卫星遥感数据并进行了定量化处理,构建了冬小麦叶绿素密度、叶面积指数的遥感反演模型,生产了长时序冬小麦植被参数卫星遥感产品。通过监测冬小麦叶绿素密度、叶面积指数的时序变化规律,分析了不同品种冬小麦的长势情况,发现高产量小麦在越冬期长势显著优于低产量小麦。在此基础上,构建了基于归一化植被指数(NDVI)的冬小麦估产模型,结果表明:利用小麦抽穗期和乳熟期的累计NDVI值可以实现产量的精确估算,据此绘制了龙亢农场2017年冬小麦产量遥感估算地图,产量分布与实际种植情况吻合良好。实现了基于时序卫星定量遥感数据的冬小麦长势监测和产量预测,为区域范围内农作物长势监测提供了一种有效途径。  相似文献   

10.
基于时序定量遥感的冬小麦长势监测与估产研究   总被引:1,自引:0,他引:1  
遥感技术是高效、客观监测农作物生长状态的重要手段,对农业生产管理具有重要意义。以安徽龙亢农场为研究区,收集了中高分辨率多源卫星遥感数据并进行了定量化处理,构建了冬小麦叶绿素密度、叶面积指数的遥感反演模型,生产了长时序冬小麦植被参数卫星遥感产品。通过监测冬小麦叶绿素密度、叶面积指数的时序变化规律,分析了不同品种冬小麦的长势情况,发现高产量小麦在越冬期长势显著优于低产量小麦。在此基础上,构建了基于归一化植被指数(NDVI)的冬小麦估产模型,结果表明:利用小麦抽穗期和乳熟期的累计NDVI值可以实现产量的精确估算,据此绘制了龙亢农场2017年冬小麦产量遥感估算地图,产量分布与实际种植情况吻合良好。实现了基于时序卫星定量遥感数据的冬小麦长势监测和产量预测,为区域范围内农作物长势监测提供了一种有效途径。  相似文献   

11.
为了提高小麦叶部病害的识别准确率,采用高斯混合模型结合EM 算法对小麦叶 片进行提取,获得较大目标,使得分割准确率比直接分割病害区域有所提高,同时降低了分割 难度。并结合HSV 主颜色直方图和通过Tamura 纹理特征中的粗糙度、方向度和对比度作为特 征进行筛选,采用随机森林方法对小麦健康叶片、白粉病、叶枯病和叶锈病图像进行了识别, 整体识别准确率可达95%。通过实验验证,该方法是有效可行的,并优于同等条件下的支持向 量机(SVM)方法。    相似文献   

12.
Field spectroscopy is a rapid and non-destructive analytical technique that may be used for assessing plant stress and disease. The objective of this study was to develop spectral indices for detection of Ganoderma disease in oil palm seedlings. The reflectance spectra of oil palm seedlings from three levels of Ganoderma disease severity were acquired using a spectroradiometer. Denoizing and data transformation using first derivative analysis was conducted on the original reflectance spectra. Then, comparative statistical analysis was used to select significant wavelength from transformed data. Wavelength pairs of spectral indices were selected using optimum index factor. The spectral indices were produced using the wavelength ratios and a modified simple ratio method. The relationship analysis between spectral indices and total leaf chlorophyll (TLC) was conducted using regression technique. The results suggested that six spectral indices are suitable for the early detection of Ganoderma disease in oil palm seedlings. Final results after regression with TLC showed that Ratio 3 is the best spectral index for the early detection of Ganoderma infection in oil palm seedlings. For future works, this can be used for the development of robust spectral indices for Ganoderma disease detection in young and mature oil palm using airborne hyperspectral imaging.  相似文献   

13.
小麦叶部常见病害特征提取及识别技术研究   总被引:1,自引:0,他引:1  
选取小麦叶部常见病害图像,利用图像处理技术进行病害种类的识别。将图像由RGB彩色空间转换到HSV颜色空间,提取相关的颜色特征(色相和饱和度),接着提取几何形状特征(周长、面积、矩形度、似圆度、偏心率等),通过分析样本图像得到每种病害的特征值范围,利用特征值对未知样本进行病害识别。系统以白粉病和锈病(叶锈病、条锈病和秆锈病)为研究对象,根据颜色特征对白粉病和锈病加以识别,然后根据几何形状特征对叶锈病、条锈病和秆锈病进行识别,操作简单方便,识别准确率达96%以上。实验结果表明,选取的颜色特征和几何形状特征对4种小麦叶部常见病害的识别是有效且可行的。  相似文献   

14.
叶绿素是植物进行光合作用的重要色素,叶绿素含量可以作为评价植物生长状况的重要参数。本研究基于甘蔗叶片的反射光谱,利用PCA及BP神经网络算法,建立了甘蔗叶片的叶绿素含量预测模型。PCA算法可以在尽可能少地丢失有用光谱信息的前提下,降低输入光谱矩阵的维数,最大限度地减少冗余信息。BP神经网络算法因其良好的非线性逼近能力可大大提高该模型的预测精度。研究发现:基于PCA和BP算法建立的叶绿素含量预测模型,其预测值与实测值之间的R2达0.8929,表明该模型具有较高的预测能力。  相似文献   

15.
开展高等植物光合作用过程参数的实时检测技术研究,对于深入开展空间生物学效应具有重要意义。作为光合作用重要参数的高等植物叶绿素含量与其荧光光谱具有较好的相关性,为此,可以通过探测分析植物荧光光谱,建立其与叶绿素的相关性模型,间接表征其中的叶绿素含量。介绍一种新的建模方法即支持向量机(SVM),通过实验验证,方法预测叶绿素含量是可行的,相对于一般采用的线性回归法具有更好的预测效果和更高的测量精度。  相似文献   

16.
Remote sensing estimation of leaf chlorophyll content is of importance to crop nutrition diagnosis and yield assessment, yet the feasibility and stability of such estimation has not been assessed thoroughly for mixed pixels. This study analyses the influence of spectral mixing on leaf chlorophyll content estimation using canopy spectra simulated by the PROSAIL model and the spectral linear mixture concept. It is observed that the accuracy of leaf chlorophyll content estimation would be degraded for mixed pixels using the well-accepted approach of the combination of transformed chlorophyll absorption index (TCARI) and optimized soil-adjusted vegetation index (OSAVI). A two-step method was thus developed for winter wheat chlorophyll content estimation by taking into consideration the fractional vegetation cover using a look-up-table approach. The two methods were validated using ground spectra, airborne hyperspectral data and leaf chlorophyll content measured the same time over experimental winter wheat fields. Using the two-step method, the leaf chlorophyll content of the open canopy was estimated from the airborne hyperspectral imagery with a root mean square error of 5.18 μg cm?2, which is an improvement of about 8.9% relative to the accuracy obtained using the TCARI/OSAVI ratio directly. This implies that the method proposed in this study has great potential for hyperspectral applications in agricultural management, particularly for applications before crop canopy closure.  相似文献   

17.
氮素是作物需要最大量的营养元素,严重影响作物的生长发育和产量品质。高光谱遥感对氮素含量进行反演,具有快速、低耗及非损伤性等优势。提出了一种多光谱指数和SVM模型相结合的方法,选取不同生育期和不同病害严重度的加工番茄细菌性斑点病的病叶,同时测定病叶的氮素含量。通过相关分析、线性回归的绝对系数R2和F值,优选了光谱指数PSSRb、ND705、GMI-2和PTBSc,作为SVM模型的输入变量,反演氮素含量和不确定性分析。结果表明:SVM模型反演氮素含量的真实值与预测值的相关系数为0.849,均方误差MSE为0.012,平均相对误差为0.007。与单光谱指数PSSRb和GMI-2构建的指数模型比较,SVM模型的预测能力更强,真实值与预测值拟合方程的绝对系数R2最大(R2=0.720)。说明多光谱指数的SVM模型,提高了加工番茄细菌性斑点病氮素含量的反演精度,同时为多波段协同反演氮素含量提供了新的思路。  相似文献   

18.
基于植被指数融合的冬小麦生物量反演研究   总被引:1,自引:0,他引:1  
作物群体生物量是形成产量的物质基础,遥感技术是高效、客观监测作物地上生物量的重要手段,对农业生产管理具有重要意义.以安徽省龙亢农场为研究区,通过PROS AIL模拟光谱分析了 4个LAI相关的可见光-近红外植被指数、2个叶片干物质相关的短波红外植被指数和8个融合植被指数与冬小麦地上生物量的关系,并建立反演模型.模拟结果...  相似文献   

19.
Early prediction of crop yield can be an important tool for identifying promising genotypes in breeding programmes. To assess whether measurements of canopy reflectance at given stages of development could be used for yield forecasting and to identify the most appropriate indices, locations and growth stages for durum wheat yield assessment, nine field experiments, each including 20 or 25 durum wheat (Triticum turgidum L. var durum) genotypes, were carried out under a wide range of Mediterranean conditions. Canopy reflectance was recorded with a portable field spectroradiometer at several times from booting to physiological maturity, and nine indices were further derived. Grain yield was measured at harvesting. The results indicated that milk-grain stage was the most appropriate developmental stage for yield assessment. However, some indices were also sensitive to yield variations when determined at anthesis or even heading or booting. The capacity of spectral reflectance indices to forecast grain yield increased on locations that allowed genotypes to express their yield potentiality. Reflectance at 550?nm (R550), water index (WI), photochemical reflectance index (PRI), structural independent pigment index (SIPI), normalized difference vegetation index (NDVI) and simple ratio (SR) explained jointly a 95.7% of yield variability when all the experiments were analysed together, 92% being explained by R550. When regression analyses were carried out separately for each experiment, spectral reflectance indices explained from 17.3% to 65.2% of total variation in yield, and the indices that best explained differences in yield were experiment-dependent. Our data suggest that reflectance at 680?nm (R680), WI and SR may be suitable estimators of durum wheat grain yield under Mediterranean conditions, when determined at milk-grain stage.  相似文献   

20.
为解决钱塘江涌潮检测难问题,提出了一种新的涌潮检测方法。首先,通过梅尔倒谱系数MFCC(Mel-Frequency Cepstral Coefficients)提取涌潮样本多维声学特征与非涌潮样本声学特征;然后,使用支持向量机(SVM)构建涌潮检测模型;最后,通过模型对输入的样本特征进行分类判断。与以采用线性预测倒谱系数(LPCC)提取声学特征方法或是采用BP神经网络构建检测模型相比,MFCC与支持向量机结合在涌潮检测的精度上有一定的提高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号