共查询到17条相似文献,搜索用时 89 毫秒
1.
将RNN编码器-解码器作为传统的基于短语的PSMT系统的一部分,在传统统计机器翻译基础上,集成RNN解码器-编码器,兼容PSMT创建了新联合模型(RNN+PSMT)。新的模型不仅在维-汉、汉-英机器翻译的应用中取得了成效,而且能够捕捉到语言的规律,使得机器翻译中的一个重要评价指标的BLEU值得到了显著提高。实验结果表明,系统的整体性能超过了传统统计机器翻译。 相似文献
2.
3.
4.
陈祖君 《计算机与数字工程》2020,48(1):13-18,50
针对英文等符号语言不能直接使用现有的神经网络机器翻译模型(NMT)的问题。在简述LSTM神经网络的基础上,采用分桶(b ucketing)的方式将样本进行batch划分,在NMT模型中加入注意力机制提高了系统的性能,并分别利用双向LSTM神经网络和贪婪算法设计了基于上下文特征提取的编码器和输出算法的解码器。最后从语句还原程度和语义识别情况两个角度对英文的一元分词和HMM分词在NMT模型上的应用结果进行了对比,研究了英文的NMT模型适配方案。 相似文献
5.
近年来,基于神经网络的机器翻译成为机器翻译领域的主流方法,但是在低资源翻译领域中仍存在平行语料不足和数据稀疏的挑战.针对维-汉平行语料不足和维吾尔语形态复杂所导致的数据稀疏问题,从维吾尔语的音节特点出发,将单词切分成音节,同时融入BME(Begin,Middle,End)标记思想,提出一种基于带标记音节的神经网络机器翻... 相似文献
6.
统计机器翻译是近十年来的主流机器翻译技术,其在维汉机器翻译中良好的性能已经得到了广泛的认可。维汉统计机器翻译的最终翻译性能同样是受这几方面的影响:翻译模型、语言模型、语料质量和规模等。本文旨在通过对维汉双语训练语料的筛选来提高最终的机器翻译性能。在相关学者的研究基础上,本文提出了改进的IBM1模型评价句对齐质量、双语语言模型困惑度进行语料筛选和多种筛选指标综合求交集的方法。这些方法没有语言特性的依赖,支持维汉双语语料的筛选。通过实验可证明,使用这些方法筛选而来的语料训练出的维汉翻译模型的性能更优。 相似文献
7.
现有的人群移动性研究对于较长的轨迹面临着预测精度较低的问题.对此,提出基于长短期神经网络(LSTM)的编码器-解码器模型来预测人群移动轨迹.同时考虑过去和当前的轨迹,且限制当前轨迹的长度,从而充分发挥LSTM的能力.将每个用户的全部轨迹划分为历史轨迹和当前轨迹;使用双向长短期神经网络(BiL-STM)和数据的逆置两个方... 相似文献
8.
为有效降低维-汉统计机器翻译中语料质量对翻译质量的影响,对维吾尔语文本预处理技术进行研究,结合维吾尔语文本语料的语言特征和多样性,提出基于语法规则和词法规则结合的维吾尔语文本预处理方法。在对维吾尔语文本中的语义单元、对偶词和标点符号进行特征分析的基础上,导出维吾尔语文本词例化和标点符号规范化的规则和处理流程。实验结果表明,该研究有效降低了词对齐阶段的单词数量、缓解了数据稀疏,提高了翻译质量。 相似文献
9.
10.
11.
杨娇 《计算机测量与控制》2021,29(1):194-199
传统的神经机器翻译方法在忽略句子层面语境的情况下,利用词层面语境来预测目标语的翻译,这有利于统计机器翻译中的翻译预测;但由于词的主题往往是根据句意和上下文动态变化的,存在一词多义等复杂情况;这会导致翻译的不准确;因此,利用卷积神经网络将句子级上下文表示为潜在的主题表示,并设计了一个主题关注度模型,将源句子级主题上下文信息集成到基于Attention和基于Transformer的神经机器翻译方法中;实验结果表明,提出的方法的BLEU评分最高大约等于40。 相似文献
12.
神经网络机器翻译是最近几年提出的机器翻译方法,在多数语言对上逐渐超过了统计机器翻译方法,成为当前机器翻译研究前沿热点。该文在藏汉语对上进行了基于注意力的神经网络机器翻译的实验,并采用迁移学习方法缓解藏汉平行语料数量不足问题。实验结果显示,该文提出的迁移学习方法简单有效,相比短语统计机器翻译方法,提高了三个BLEU值。从译文分析中可以看出藏汉神经网络机器翻译的译文比较流畅,远距离调序能力较强,同时也存在过度翻译、翻译不充分、翻译忠实度较低等神经网络机器翻译的共同不足之处。 相似文献
13.
神经机器翻译由于无法完全学习源端单词语义信息,往往造成翻译结果中存在着大量的单词翻译错误。该文提出了一种融入单词翻译用以增强源端信息的神经机器翻译方法。首先使用字典方法找到每个源端单词对应的目标端翻译,然后提出并比较两种不同的方式,用以融合源端单词及其翻译信息: ①Factored 编码器: 单词及其翻译信息直接相加; ②Gated 编码器: 通过门机制控制单词翻译信息的输入。基于目前性能最优的基于自注意力机制的神经机器翻译框架Transformer,在中英翻译任务的实验结果表明,与基准系统相比,该文提出的两种融合源端单词译文的方式均能显著提高翻译性能,BLEU值获得了0.81个点的提升。 相似文献
14.
近年来,神经机器翻译(neural machine translation, NMT)表现出极大的优越性,然而如何在翻译一个文档时考虑篇章上下文信息仍然是一个值得探讨的问题。传统的注意力机制对源端的所有词语进行计算,而在翻译当前句子时篇章中大量的信息中只有小部分是与之相关的。在篇章级机器翻译中,采用传统的注意力机制建模篇章信息存在着信息冗余的问题。该文提出了一种联合注意力机制,结合“硬关注”和“软关注”的机制对篇章上下文的信息进行建模。关键思想是通过“硬关注”筛选出与翻译当前句子相关的源端历史词语,然后采用“软关注”的方法进一步抽取翻译中所需的上下文信息。实验表明,相比于基线系统,该方法能使翻译性能获得明显提升。 相似文献
15.
稀缺资源语言神经网络机器翻译研究综述 总被引:1,自引:0,他引:1
作为目前主流翻译方法的神经网络机器翻译已经取得了很大突破, 在很多具有丰富数据资源的语言上的翻译质量也不断得到改善, 但对于稀缺资源语言的翻译效果却仍然并不理想. 稀缺资源语言机器翻译是目前机器翻译领域的重要研究热点之一, 近几年来吸引了国内外的广泛关注. 本文对稀缺资源语言机器翻译的研究进行比较全面的回顾, 首先简要介绍了与稀缺资源语言翻译相关的学术活动和数据集, 然后重点梳理了目前主要的研究方法和一些研究结论, 总结了每类方法的特点, 在此基础上总结了不同方法之间的关系并分析了目前的研究现状. 最后, 对稀缺资源语言机器翻译未来可能的研究趋势和发展方向进行了展望,并给出了相关建议. 相似文献
16.