共查询到19条相似文献,搜索用时 93 毫秒
1.
电力设备锈迹目标的识别在电力安全方面具有极高的应用价值,但是锈迹具有大小、形状不规则等特点,利用传统的机器学习算法检测效率和准确率不高.针对这一问题,研究分析锈迹特点,提出基于Mask R-CNN的电力设备锈迹检测识别方法.使用Faster R-CNN完成目标检测的功能,FCN精准的完成语义分割的功能,实现像素级别的分类识别,较好地解决了不规则锈迹的检测问题.实验结果表明,基于Mask R-CNN的电力设备锈迹检测结果准确率高. 相似文献
2.
RCNN网络与全卷积网络框架等技术使得目标检测技术能够快速发展。RCNN网络与全卷积网络框架不仅训练速度快,推断速度也十分的迅速,此外还具有良好的鲁棒性以及灵活性。在人工智能领域的发展中,提高目标检测效率的关键在于好的技术,以及得到更加有效的、深层的特征表示,通过使用深层网络的多层结构来简洁地表达复杂函数。本文用到的目标检测方法先要用区域建议网络得到建议位置再进行检测,因为Fast R-CNN和R-CNN等目标检测算法已经在运行时间方面有了很大的提高,所以计算区域建议成为目标检测的一个计算瓶颈。本文通过在算法中加入特征融合技术,将每一卷积层提取的特征进行融合,使用区域建议网络来进行候选区域提取。区域建议网络和检测网络共享全图的卷积特征,从而很大程度地缩短候选区域的提取时间,提高目标检测的精度。 相似文献
3.
传统的自然场景文字检测方法所采用的手工设计特征在应对复杂自然场景时缺乏鲁棒性。针对复杂自然场景中的多方向文字检测问题,提出了一种新的基于深度学习文字检测方法,采用全卷积网络(Fully Convolutional Networks,FCN)并融合多尺度文字特征图,结合语义分割的方法分割文字候选区域,利用分割得到的文字候选区域直接获取文字候选检测框并进行扩大补偿处理,对文字候选检测框进行后处理得到最终检测结果。该方法在ICDAR2013、ICDAR2015标准数据集进行了测评,实验结果表明该方法相比一些最新方法取得了更好的性能。 相似文献
4.
5.
为了提高全卷积神经网络(Fully Convolutional Networks, FCN)算法检测异物的精确度,提出一种基于FCN不确定特征的铁路入侵异物检测算法。将检测的不确定性这一自然属性添加到检测系统中,同时为了减少卷积过程中引起的图像伪影现象,提出一种新的混合下采样方法。实验证明,该算法可以有效地提高FCN异物检测的精确度,算法的PR曲线、F-measure和平均绝对误差(Mean Absolute Error, MAE)均优于现有的算法。 相似文献
6.
7.
9.
针对隧道渗漏水病害面积检测中由于复杂环境干扰和隧道几何柱面形状影响而造成较大误差的问题,设计了基于FCN与视场柱面投影算法渗漏水面积检测算法。研制了无人病害巡检车,实现了隧道病害数据的无人采集,通过将FCN处理后的渗漏水病害图片进行视场转换和柱面投影模型的优化,提高了所计算病害面积的准确性。实验结果表明,该算法相比OSTU法、分水岭法和自适应阈值法算法使误检率下降至0.0189,有效提升了隧道渗漏水面积检测的精度。 相似文献
10.
针对复杂城市环境下天气、光照、目标尺度以及车辆之间的遮挡等因素影响带来的车辆检测精度较差问题,提出一种改进区域全卷积网络的车辆检测算法(DeR-FCN)。通过特征级联的方式,跨层连接融合车辆底层细节特征和高层语义特征;使用维度分解区域提议网络,获得更加精准的区域候选框;在预测阶段采用软化非极大值抑制的方法,输出更加准确的检测结果。为验证算法的有效性,在KITTI和PASCAL VOC数据集,使用DeR-FCN算法和常用的车辆检测算法进行对比实验,实验结果表明,DeR-FCN算法的检测精度高于其它方法。 相似文献
11.
12.
配电柜锈蚀会导致的后果有接触不良,严重的甚至会导致火灾、部分电气控制设备爆炸。为此,本文提出一种基于神经网络的多尺度电表锈斑检测方法。首先,基于大量的锈斑数据,训练识别锈斑的卷积神经网络(CNN)模型;其次,利用训练出的CNN模型,对电表表箱的位置进行检测,同时实现对电表表面锈斑的实时识别。算法融合了通过级联RPN网络获得多尺度的特征映射,充分利用低层特征的位置信息和高层特征的强语义信息来增强检测效果。针对采集的电表锈斑数据集,电表检测达到94.9%的精确度,优于采用YOLOv2达到的91.1%的精确度,锈斑分类精度达到94.5%。锈斑识别的识别率、实时性和稳定性可以较好地满足实际应用的需要。 相似文献
13.
船舶检测与识别对于港口智能监控,实现港口资源的有效管理具有重要意义。由于复杂的船舶轮廓、船牌位置不固定、船牌文本类型复杂多样和船牌文字个数不确定等因素,使得船舶的检测和识别非常具有挑战性。本文提出一种基于全卷积神经网络的船舶检测与识别方法:SDR-FCN。SDR-FCN利用本文提出的船舶检测算法SDNet进行船舶检测定位,然后利用本文提出的船牌文本检测算法PDNet进行船牌文字检测,最后利用具备在线自适应性的分类器OA-Classifier进行船牌分类识别。OA-Classifier综合了AIS(船舶自动识别系统)反馈的信息,提高了分类器的识别精度。实际SDR-FCN部署运行表明,它能够以较高的精度可靠地工作,满足实际应用。 相似文献
14.
在自动驾驶领域,计算机对周围环境的感知和理解是必不可少的.其中,相比于二维目标检测,三维点云目标检测可以提供二维目标检测所不具有的物体的三维方位信息,这对于安全自动驾驶是至关重要的.针对三维目标检测中原始输入点云到检测结果之间跨度大的问题,首先,提出了基于结构感知的候选区域生成模块,其中定义了每个点的结构特征,充分利用... 相似文献
15.
目的 准确快速的火焰检测技术在早期火灾预警中具有重要的实际应用价值。为了降低伪火类物体引起的误警率以及早期小火焰的漏检率,本文设计了一种结合感受野(receptive field,RF)模块与并联区域建议网络(parallel region proposal network,PRPN)的卷积神经网络(receptive field and parallel region proposal convolutional neural network,R-PRPNet)用于火焰检测。方法 R-PRPNet主要由特征提取模块、并联区域建议网络和分类器3部分组成。特征提取模块在MobileNet卷积层的基础上,通过嵌入感受野RF模块扩大感受野捕获更丰富的上下文信息,从而提取更具鉴别性的火焰特征,降低伪火类物体引起的误警率;并联区域建议网络与特征提取模块后端的多尺度采样层连接,使用3×3和5×5的全卷积进一步拓宽多尺度锚点的感受野宽度,提升PRPN对不同尺度火焰的检测能力,解决火灾发生初期的小火焰漏检问题;分类器由softmax和smooth L1分别实现分类与回归。在R-PRPNet训练过程中,... 相似文献
16.
针对多尺度行人检测的问题,本文提出一种基于融合特征金字塔网络(Feature pyramid networks,FPN)和Faster R-CNN(Faster region convolutional neural network)的行人检测算法。首先,对FPN和区域建议网络(Region proposal networks,RPN)进行融合;然后,对FPN和Fast R-CNN进行融合;最后,在Caltech数据集、KITTI数据集和ETC数据集上分别对融合FPN和Faster R-CNN的行人检测算法进行训练和测试。该算法在Caltech数据集、KITTI数据集和ETC数据集上的mAP (mean Average Precision)分别达到69.72%, 69.76%和89.74%。与Faster R-CNN相比,该算法不仅提高了行人检测精度,而且在多尺度行人检测的问题上也获得了较为满意的检测效果。 相似文献
17.
为了准确分割开紧密粘连的砂石目标,并获得砂石目标粒径大小,提出一种基于两阶段深度学习的砂石图像粒径检测方法。该方法利用图像处理技术对砂石图像进行预处理,然后通过第一阶段的网络分割模型对砂石目标进行目标分割。对分割目标进行形态学处理后,很多砂石目标紧密粘连在一起,再通过第二阶段的网络分离模型将粘连的砂石目标分离开来,得到分割且分离的结果图。最后计算砂石目标最长径,求均值后得到砂石图像的平均粒径大小。通过实验验证该算法可以快速、准确地将紧密粘连的砂石目标分割开来,提高了砂石目标粒径大小计算精度。 相似文献
18.
电力设备的锈蚀检测作为电力系统故障检测中非常重要的组成部分,需要被快速准确的识别出来.本文结合注意力模型提出一种基于轻量级SSD的电力设备锈蚀目标检测算法,可以有效地对电力设备的锈蚀区域进行检测.本文算法模型利用深度可分离卷积代替标准卷积来大幅度压缩模型,并在此基础上提出了一种基于注意力模型的上采样特征融合策略用于弥补缩减模型结构带来的精度损失.该算法在RustDetection数据集上相比较标准SSD可以做到在参数量减少63.6%,速度提升46.7%的情况下提升10.47%的准确度和5.99%的平均精度. 相似文献
19.
朱盈盈张拯章成全张兆翔白翔刘文予 《数据采集与处理》2017,32(6):1097-1106
在文字检测的相关研究中,针对文字的候选框提取方法并未得到广泛关注与深入挖掘。一方面由于文字本身结构和一般物体具有较强的差异性,另一方面由于文字对检测的精度要求高。本文提出了一种针对文字的候选框提取算法,该算法首先利用全卷积网络进行快速预测文字区域,有效地减少了候选框的搜索范围,然后针对文字特性对EdgeBox算法进行改进,使之适用于自然场景文字候选框的提取。此外,本文在两个自然场景文字检测的标准数据集上对该算法进行了评测,并与其他已有的候选框提取方法进行了比较。实验结果表明本文方法相较其他算法,具有更好的性能和鲁棒性。 相似文献