首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
连续玄武岩纤维增强复合材料力学性能试验研究   总被引:8,自引:0,他引:8  
连续玄武岩纤维(CBF)由于其优异的力学性能、物理性能和较低的价格,在土木工程中应用前景广泛。CBF可以与树脂复合制作片状、板状、筋状等各种各样的复合材料(CBFRP),在实际工程中科学合理应用CBFRP,必须对其力学性能作深入了解。对CBFRP片材和棒材的力学性能进行研究,重点讨论了影响CBFRP力学性能的各种参数,研究结果可为CBF及其CBF片材生产厂家提供参考,并为CBF的深入研究和工程应用打下基础。  相似文献   

2.
杨莉  徐文正 《中国塑料》2016,30(11):48-52
利用混杂原理,先将玄武岩纤维与聚乳酸纤维混合制成针刺毡,再与聚乳酸树脂复合,以提高树脂基体对增强体结构的渗透和结合性能。采用正交试验法,以混杂针刺毡中聚乳酸纤维含量、复合层压压力、复合层压温度为影响因素,讨论了混杂复合层压工艺对复合材料力学性能的影响。结果表明,采用混杂复合工艺有利于复合材料力学性能的改善,且混杂纤维含量在一定范围内时,复合材料的力学性能会随着混杂纤维含量的增加而线性增强,同时复合层压压力的增加也有利于复合材料力学性能的改善;采用混杂复合工艺时,复合层压温度对复合材料力学性能的影响规律不同于传统层压复合时复合层压温度对复合材料力学性能的影响,复合层压温度过高不利于复合材料力学性能的提高。  相似文献   

3.
玄武岩纤维(BF)和玄武岩颗粒(BP)增强高密度聚乙烯(PE-HD)力学性能优良,特别是硬度较高,用于防白蚁高压电缆护套的制造。首先利用硅烷偶联剂KH550对BF和BP进行表面改性,然后利用转矩流变仪熔融共混BP、BF和PE-HD,最后通过微型注塑机制备不同填料含量的PE-HD/BF/BP复合材料。通过扫描电子显微镜、差示扫描量热仪、同步热分析仪、万能试验机、动态力学性能分析仪、邵氏硬度计、流变仪等研究复合材料的形态、力学性能、结晶性能、热稳定性能及流变性能等。结果表明,与PE-HD相比,BF和BP填料的引入显著增强了PE-HD/BF/BP复合材料的力学性能和热稳定性能,当BF含量为20份,BP含量为10份时(BF20BP10),复合材料的力学性能最优,拉伸强度和拉伸弹性模量分别为47.51 MPa和3 331.39 MPa,分别增加了41.7%和211%,硬度达到70.2HD,明显超出防白蚁电缆对硬度的要求,即大于65HD,因此具有更优异的防白蚁啃食性能。与其它配方相比,BF20BP10复合材料具有较高的结晶度、储能模量,较小的损耗因子。因此,PE-HD/BF/BP复合材料的最优配方...  相似文献   

4.
采用偶联剂KH570对玄武岩纤维(BF)进行表面改性,研究表面改性BF的长度、添加量对增强环氧树脂(EP)复合材料力学性能的影响。结果表明,改性BF表面产生很多凸起,变得非常粗糙。BF表面改性使复合材料的拉伸强度提高10%~20%,冲击强度提高10%~40%。随着改性BF长度及添加量的增加,复合材料的力学性能显著提高。当改性长BF的质量分数为4%时,与纯EP相比,复合材料的拉伸强度和冲击强度分别提高248.3%和451.5%。长BF的增强效果明显好于改性长玻璃纤维(GF),尤其纤维的添加量较大时复合材料拉伸强度的提高更为明显。当长BF的质量分数为4%时,长BF增强复合材料的拉伸强度较长GF增强复合材料提高37.8%,冲击强度提高9.2%。  相似文献   

5.
通过拉伸实验和老化实验,研究了玄武岩纤维含量对BF/PLA拉伸性能、抗冲击性能及耐老化性能的影响规律,通过DSC实验得到BF/PLA复合材料的结晶度,分析其耐老化原因。随着质量分数增加,其拉伸强度增加可达到141 MPa,弹性模量达到5 GPa,达到峰值后又减小。质量分数达到30%时,缺口冲击强度和非缺口冲击强度分别达到6.7 kJ/m~2和20.76 kJ/m~2。DSC实验结果表明,随着玄武岩纤维含量的增加,聚乳酸复合材料的结晶度由34.6%增加到54.6%,而结晶度的增加可以减缓聚乳酸的降解速度。当质量分数达到60%时,老化实验后的弹性模量可以保持降解前的77%,延缓降解速度较为明显。经分析,拉伸强度与玄武岩纤维质量分数呈二次多项式关系,而弹性模量与玄武岩纤维质量分数之间呈线性关系。这种函数关系不受材料力学性能下降的影响。  相似文献   

6.
玄武岩纤维及其复合材料基本力学性能实验研究   总被引:22,自引:5,他引:22  
本文对一种国产玄武岩纤维及其复合材料的基本力学性能进行了实验研究,并对纤维的化学组成和表面状态进行了分析。结果表明,所研究的玄武岩纤维丝束的拉伸性能低于S-2玻璃纤维,分散性较大;玄武岩纤维/环氧648复合材料的基本力学性能多数与S-2玻璃纤维/环氧648复合材料相近,部分性能甚至高于后者。  相似文献   

7.
以玄武岩纤维(BF)、聚乳酸(PLA)为主要原料,再与成核剂TMC–210、硅烷偶联剂KH–550、环氧扩链剂KL–E4370B和填料纳米碳酸钙通过熔融共混制备3D打印玄武岩纤维/聚乳酸复合线材。讨论了纤维含量、成核剂用量、硅烷偶联剂用量、环氧扩链剂用量、纳米碳酸钙用量对复合线材力学性能的影响。结果表明:w(BF)以20%~30%为宜;TMC–210对于复合线材强度增强效果不明显;w(KH–550)为7.5%、w(KL–E4370B)为4%、w(纳米碳酸钙)为7.5%时,复合线材力学性能最佳。  相似文献   

8.
玄武岩纤维(BF)未经改性处理和经硅烷偶联剂(KH–550和KH–570)进行处理后,添加到高密度聚乙烯(PE–HD)基体树脂中,增强PE–HD的力学性能,用傅立叶变换红外光谱和扫描电子显微镜对硅烷偶联剂处理的BF进行表征,同时,用SEM观察BF增强PE–HD复合材料的拉伸断面。结果表明,随着未经改性处理BF添加量增加,PE–HD复合材料的拉伸强度、弯曲强度逐渐提高,当添加量达到30%时,拉伸强度达到45.5 MPa,提升79.1%;弯曲强度达到41.3 MPa,提升118.9%。经KH–550和KH–570处理的BF添加量达到20%时,PE–HD复合材料的拉伸强度均达到45 MPa以上,其后随着BF添加量继续增加,拉伸强度变化不大,而弯曲强度随BF添加量的增加逐渐增大。当BF添加量达到30%时,BF改性与否对PE–HD复合材料的力学性能的影响不大。当改性BF添加量为5%~15%时,KH–550改性的PE–HD复合材料的力学性能较KH–570改性的高;当改性BF添加量为20%,25%时,KH–570改性的PE–HD复合材料的力学性能较KH–550改性的高。  相似文献   

9.
玄武岩纤维增强混凝土力学性能的研究   总被引:2,自引:0,他引:2  
本文研究了单掺玄武岩纤维及玄武岩纤维与粉煤灰复合对混凝土力学性能的影响.结果表明,掺0.05%~0.15%的玄武岩纤维对混凝土抗压强度的改善不明显,但可以明显提高混凝土的抗折和劈裂抗拉强度;当玄武岩纤维掺量为0.10%时,与基准混凝土相比,混凝土的28 d拉压比提高了27.2%,且当纤维掺量为0.15%时,混凝土28 d折压比提高13.5%,即玄武岩纤维掺入到混凝土中能降低混凝土的脆性,提高其韧性和抗裂性;同时,当适量的玄武岩纤维和粉煤灰复合,能进一步提高玄武岩纤维混凝土的力学性能.  相似文献   

10.
采用混掺聚甲醛(POM)纤维和玄武岩纤维(BF)的方法制备了一种多尺度纤维混杂体系的复合材料,研究了其抗折强度、抗压强度、弯曲韧性及直接拉伸强度等基本力学性能,并通过扫描电子显微镜和数码电子显微镜对其微观结构进行分析。抗折、抗压强度试验结果表明,混掺两种纤维试样的抗折强度和早期抗压强度均明显优于单掺POM纤维试样,然而,28 d抗压强度有小幅下降;三点弯曲试验结果表明,单掺POM纤维可以改善水泥基材料的韧性并提高材料的等效弯曲强度,混掺BF后,等效弯曲强度进一步提高。微观分析结果表明,POM纤维和BF与基体结合紧密,两种纤维在宏观和微观尺度上均起到协同作用,共同发挥阻止裂纹扩展的作用,从而改善水泥基复合材料的韧性并提高强度。  相似文献   

11.
Bamboo fiber (BF)-reinforced starch/polypropylene (PP) composites were prepared by extrusion and injection molding methods. The mechanical and thermal properties and water absorption were evaluated by different methods. Moreover, composite samples were subjected to biodegradation through soil burial test and microbes medium degradation. Different stages of biodegradation were investigated by weight loss, attenuated total reflection Fourier transformed infrared spectroscopy, differential scanning calorimeter, and scanning electron microscope. It was found that contents of BF and starch resin had a significant influence on the properties of the composites. With more content of BF, the composite exhibited a better flexural property and biodegradation. A distinct decrease of weight loss and mechanical properties indicated the degradation caused by the microbes. After biodegradation, thermal stability of the composites decreased while the crystallinity of PP increased. The results prove that the composites more easily tend to be degraded and assimilated by microbes. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 137, 48694.  相似文献   

12.
Basalt fabric (BF) was first treated with silane coupling agent KH550, modified basalt fabric (MBF) was obtained. Then MBF were molded with polypropylene (PP) matrix, and polypropylene/modified basalt fabrics (PP/MBF) composites were obtained. The influence of concentration and treating time of KH550 on MBF were characterized by hydrophilicity and lipophilicity. The tensile strength and morphology of basalt fabric were tested by single filament strength tester and scanning electron microscopy. The mechanical properties of composites were measured with electronic universal testing machine and impact testing machine, and the thermal properties were tested by thermogravimetric analysis and dynamic mechanical analysis. The results showed that the lipophilicity of MBF is improved significantly by KH550 while the tensile is nearly damaged. The mechanical properties of composites are larger than that of pure PP, among which the impact property was improved the most, showing 194.12% enhancement. The thermal stability and dynamic viscoelasticity were better than pure PP; furthermore, the concentration of KH550 virtually had no effect on the thermal stability. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42504.  相似文献   

13.
In the present article, a series of commercial‐grade polypropylenes (PP) filled with different contents of short basalt fibers were studied. This composite material presented deterioration of both mechanical characteristics, for example, stress and strain at yield with increasing of the fiber content. On the other hand, the impact strength was fourfold higher than that of unfilled PP. A poor adhesion between the PP matrix and the basalt fibers was detected. This is why interfacial interactions were promoted by the adding of poly(propylene‐g‐maleic anhydride) (PP‐g‐MA). It was observed that the tensile properties of the obtained materials and their impact strengths increased significantly with increasing of the amount of PP‐g‐MA in the blend. The adhesion improvement was confirmed by scanning electron microscopy as well. Fourier transform infrared spectroscopy was applied to assess if any chemical interactions in the system PP/PP‐g‐MA/basalt fibers exist. Dynamic mechanical thermal analysis data showed an increase of the storage modulus with increasing fiber content. The conclusion was made that the modification of the PP matrix led to a higher stiffness but its value remained constant, irrespective of the PP‐g‐MA content. With increasing fiber content, damping in the β‐region decreased, but increase of the coupling agent content restored its value back to that of PP. The loss modulus spectra presented a strong influence of fiber content on the α‐relaxation process of PP. The position of the peaks of the above‐mentioned relaxation processes are discussed as well. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 523–531, 1999  相似文献   

14.
Basalt fiber-reinforced polybenzoxazines (BFRP) were manufactured through vacuum infusion using resorcinol bis (diphenyl phosphate) and poly-(m-phenylene methylphosphonate) together with bisphenol-F and aniline based benzoxazine. Different types and loadings of flame-retardant additives showed to have catalysis or dilution effects in viscosity measurements. BFRPs show well-penetrated fibers and near-zero porosity. Additive addition did not influence tensile properties, while apparent interlaminar shear strength decreased indicating a lower adhesion between fiber and matrix. BFRP's heat and smoke release properties increased, though time to ignition increased and flammability behavior improved by decreasing delamination yielding oxygen indices in between 72 and 91%.  相似文献   

15.
为提高C/C复合材料在2000℃以上有氧环境中的抗氧化烧蚀性能,本研究采用ZrB2浆料浸渍、ZrC-SiC前驱体浸渍裂解与Si-Zr10共晶合金反应熔渗复合工艺制备了C/C-SiC-ZrB2-ZrC复合材料,细致研究了复合材料在熔渗过程中的基体微观结构演变机理及其力学性能和抗烧蚀性能。结果表明,在反应熔渗结束后的降温阶段,部分ZrC陶瓷与残余Si熔体通过原位固-液反应转化为ZrSi2和SiC,生成的亚微米级SiC颗粒均匀镶嵌于ZrC-ZrSi2二元混合物中,最终形成ZrC-ZrSi2-SiC三相混合微区。制备的C/C-SiC-ZrB2-ZrC复合材料密度为3.18 g/cm3,开孔率为2.77%,其弯曲强度和弯曲模量分别为121.46±13.77 MPa和21.78±5.56 GPa。在其断口处能观察到较长且较多的单丝纤维拔出以及明显的界面脱黏,这表明复合材料的失效方式为韧性断裂。经2000℃,300 s的大气等离子体烧蚀,复合材料表...  相似文献   

16.
The main objective of this work was to investigate the effect of reinforcements at different scales on the mechanical properties of natural fiber-reinforced composites. Pure jute and interlaminar hybrid jute/glass fiber-reinforced polymer composites were fabricated. Different types of fillers in two weight fractions (1 and 3 wt. %) were used as second reinforcements in the hybrid jute/glass composites. Tensile, flexural, and impact tests were performed. It was found that the macroscale inter-play hybridization significantly improved the mechanical properties of the pure jute fiber based composites. When the fillers are used as second hybridization, the modified composites presented higher mechanical properties when compared to pure jute composites. However, the effect of fillers on the mechanical properties of the hybrid composites presented various trends due to the interaction between several factors (i.e., particle scale, content, and nature), which cannot always be separated. Increasing the synthetic filler content improved the tensile properties of the filled hybrid composites, while increasing the natural filler content worsen the tensile properties. The flexural strength of the multiscale hybrid composites was improved, while the impact properties were negatively affected.  相似文献   

17.
The bamboo fiber (BF)-reinforced polylactic acid (PLA) composites were prepared using the twin-screw extruder and injection molding. Thermal gravimetric analyzer results indicated the thermal stability of BF/PLA composites decreased with increasing BF content. Differential scanning calorimeter and X-ray diffraction curves showed that BF played a role as a nucleating agent, but the crystallinity of composite materials decreased with the increasing BF content. The melt flow rate of composites reduced with the increase in BF content, resulting in a poorer processing property. The processability of the composites was improved with the addition of high molecular polyethylene glycol (PEG). Mechanics performance test showed that tensile strength and bending strength of composites increased at low loading with the BF content increased then decreased when the loading continued to increase. The tensile strength of the composite materials reached 65.46 MPa when alkali-treated BF (ABF) content was 20 wt %. The flexural strength of the composites reached 97.94 MPa when ABF content was 10 wt %. Impact performance has also been improved. PEG-20000 was the best plasticizer among the PEG-6000,PEG-10000, and PEG-20000. When the component of PEG was 10 wt %, the elongation increased by 56%. The scanning electron microscopy (SEM) result showed that the fracture of the composites was smooth, most ABF were wrapped in matrix and distribution of ABF in PLA matrix was more uniform. It means that interfacial compatibility of bamboo fiber and PLA improved after BF modified by alkali. High molecular weight PEG enhance melt flow ability of polymer, result in fibers were further enclosed in the PLA matrix and increase properties of composites. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47709.  相似文献   

18.
A series of the reinforced and toughened polylactide (PLA) composites with different content of basalt fibers (BF) were prepared by twin screw extruder. The toughness of BF/PLA composite s was improved further by the addition of polyoxyethylene grafted with maleic anhydride (POE-g-MAH), ethylene–propylene–diene rubber grafted with maleic anhydride (EPDM-g-MAH), and ethylene-acrylate-glycidyl methacrylate copolymer (EAGMA), relatively. The mechanical properties, rheology, crystallization, and morphology of BF/PLA composites were studied. The results showed that basalt fiber had significant reinforcing and toughening effect in comparsion with glass fiber. EAGMA was more effective in toughening BF/PLA composites than POE-g-MAH and EPDM-g-MAH. When the content of EAGMA achieved to 20 wt %, the impact strength of BF/PLA/EAGMA composite increased to 33.7 KJ/m2, meanwhile the value was improved by 71.1% compared with pure PLA. According to dynamic rheometer testing, the use of the three kinds of elastomers increased the melt dynamic viscosity. Differential scanning calorimetry analysis showed that POE-g-MAH and EPDM-g-MAH can decrease the cold crystallization temperature (Tcc) to approximately 20°C and dramatically improve crystallinity (χc) of BF/PLA composites. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

19.
Short basalt fiber (BF) reinforced polyimide (PI) composites were fabricated by means of compression‐molding technique. The friction and wear properties of the resulting composites sliding against GCr15 steel were investigated on a model ring‐on‐block test rig under dry sliding conditions. The morphologies of the worn surfaces and the transfer films that formed on the counterpart steel rings were analyzed by means of scanning electron microscopy. The influence of the short BF content, load, and sliding speed on the tribological behavior of the PI composites was examined. Experimental results revealed that the low incorporation of BFs could improve the tribological behavior of the PI composites remarkably. The friction coefficient and wear rate decreased with increases in the sliding speed and load, respectively. The transfer film that formed on the counterpart surface during the friction process made contributions to reducing the friction coefficient and wear rate of the BF‐reinforced PI composites. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

20.
The use of natural rubber (NR) for partly substituting elastomeric chlorinated polyethylene (CPE) was determined. Mechanical and thermal aging properties as well as oil resistance of the blends were also investigated. The amount of NR in blends significantly affected the properties of the blends. The blends with NR content up to 50 wt % possessed similar tensile strength to that of pure CPE even after oil immersion or thermal aging. Modulus and hardness of the blends appeared to decrease progressively with increasing NR content. These properties also decreased in blends after thermal aging. After oil immersion, hardness decreased significantly for the blends with high NR content, whereas no change in modulus was observed. The dynamic mechanical properties were determined by dynamic mechanical thermal analysis. NR and CPE showed damping peaks at about ?40 and 4 °c, respectively; these values correlate with the glass‐transition temperatures (Tg) of NR and CPE, respectively. The shift in the Tg values was observed after blending, suggesting an interfacial interaction between the two phases probably caused by the co‐vulcanization in CPE/NR blends. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 22–28, 2002; DOI 10.1002/app.10171  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号