首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 187 毫秒
1.
Fe2+/H2O2体系内各种自由基在氧化NO中的作用   总被引:1,自引:0,他引:1       下载免费PDF全文
Fe2+/H2O2体系可分解产生多种氧化性自由基, 主要包括O2-·、·OH和HO2·。本文实验研究了O2-·、·OH及HO2·在Fe2+/H2O2体系氧化NO气体过程中的作用。结果表明:在本实验条件下, O2-·对NO气体的氧化作用不明显;·OH及HO2·是该体系氧化NO气体的主要活性物质, 其中·OH的氧化作用更大。加快自由基的生成速率可以增强Fe2+/H2O2体系对NO气体的氧化能力, 但O2的生成速率同时加快。只有少量·OH及HO2·参与NO的氧化, ·OH与HO2·之间的快速反应是Fe2+/H2O2体系氧化NO过程中H2O2利用率低的主要原因。  相似文献   

2.
掌握Fe2+/H2O2体系O2的生成路径,可为避免H2O2无效分解,开发经济高效的Fe2+/H2O2体系利用技术指明方向。采用添加自由基捕获剂的方法,探究Fe2+/H2O2体系内各种自由基对O2生成速率的影响,进而确定O2的生成路径。结果表明:Fe2+/H2O2体系内不会产生大量O2-·,O2-·不是生成O2的主要反应物质;O2-·被全部捕获后,体系中仍产生大量O2-·,但此时无O2生成,证明生成O2的反应由·OH和HO2·两种自由基直接参与。分析认为反应·OH+HO2·-H2O+O2是体系内O2生成的主要路径。控制Fe2+/H2O2体系定向生成·OH,抑制HO2·的产生,是提高Fe2+/H2O2体系中H2O2利用率的有效手段。  相似文献   

3.
周伟  赵海谦  高继慧  吴少华 《化工学报》2016,67(10):4413-4421
Fe2+的再生直接决定Fenton体系产生的能力。选取羟胺、对苯二酚、对苯醌、亚硫酸钠4种典型添加剂,通过分析不同改性Fenton体系中Fe2+浓度、H2O2浓度、氧化还原电极电位(ORP),揭示了Fe2+再生机制的差异,并进一步分析了不同添加剂与体系中H2O2及·OH的反应情况。结果表明:NH2OH能快速使Fe2+再生,但伴随其消耗,Fe2+浓度不断降低。对苯二酚、对苯醌具有相似效果,两者均可大大强化Fe2+的再生。与NH2OH不同,两者在体系中可迅速建立醌循环,持续还原Fe3+,且以两种物质或其组合均可建立循环。与上述机理均不同,Na2SO3会先与·OH及H2O2反应,因而不能有效还原Fe3+。实验还发现添加剂均存在与·OH的反应,其中Na2SO3还会消耗H2O2。  相似文献   

4.
采用实验方法研究了低成本环境友好型添加剂抗坏血酸(AA)对Fe2+/H2O2体系氧化NO气体及其对体系内H2O2分解的影响,分析了AA对体系氧化NO能力及H2O2分解的影响机制。研究结果表明:AA通过加速Fe3+向Fe2+的转化而促进Fe2+/H2O2体系对NO的氧化。[AA]0:[Fe2+]0对体系氧化NO的能力及H2O2的分解具有重要影响。综合考虑NO氧化脱除量及H2O2消耗量,合理的[AA]0:[Fe2+]0为1/3~1/2。AA的分次添加方式可大幅度提升体系氧化NO气体的能力。研究结果可望为发展基于H2O2为氧化剂的烟气NO绿色氧化技术提供理论基础。  相似文献   

5.
通过在传统芬顿体系中加入Cu2+、Co2+,研究Cu2+/Co2+/Fe2+/H2O2、Cu2+/Fe2+/H2O2、Co2+/Fe2+/H2O2和Fe2+/H2O2四种芬顿体系对垃圾渗滤液的处理效果,发现当初始pH分别为2、3、4、5、6时,各体系去除CODCr的效果排序为Cu2+/Co2+/Fe2+/H2O2>Cu2+/Fe2+/H2O2>Co2+/Fe2...  相似文献   

6.
孙彦琛  郭巍巍  王振  杨耀党  孔庆端  万俊锋  王岩 《应用化工》2023,(12):3257-3260+3264
以零价铁(Fe0)代替Fe2+作Fenton试剂催化剂,考察H2O2浓度、[H2O2]/[Fe0]摩尔比和pH值对UV/Fe0/H2O2技术降解乙苯气体的影响,分析了反应过程中H2O2和铁物质的浓度变化,通过GC-MS检测不同时间段的液体中间产物。结果表明,以48μm工业级Fe0作催化剂,在H2O2浓度为100 mmol/L、[H2O2]/[Fe0]摩尔比为40和pH值为3的优化条件下,UV365/Fe0/H2O2体系中乙苯气体降解率在45 min内达到67.5%。检测到不同时间段的液体中间产物,如甲苯、苯乙醇...  相似文献   

7.
以亚甲基蓝(MB)作为目标污染物,实验研究了Fe~(2+)/H_2O_2体系降解MB的活性物质,明确了主要反应条件对MB降解的影响特性。结果表明:HO_2·没有直接降解MB的能力;Fe~(2+)/H_2O_2体系对MB的降解能力主要来自于·OH;Fe~(2+)/H_2O_2体系降解MB可分为快速反应阶段和匀速反应阶段。快速反应阶段的MB降解率随温度升高而下降。体系对MB降解能力随H_2O_2初始浓度增加呈现先升高后减弱的趋势,本实验条件下,最佳H_2O_2初始浓度为5 mmol·L~(-1)。体系对MB降解能力随Fe~(2+)初始浓度的增加而单调增加。MB降解速率随MB初始浓度的增加而增加,但MB降解率随其初始浓度呈现先增大后减小的趋势。保证·OH生成速率及其有效利用是提高体系氧化能力及H_2O_2利用率的关键。  相似文献   

8.
彭媛  赵朋飞 《当代化工》2022,51(5):1014-1019
以石墨板为阳极、海绵状多孔金属泡沫镍(NF)为阴极、Fe板为感应电极,构建在线产生两种芬顿试剂(Fe2+/H2O2)的感应电芬顿体系,并采用响应曲面法考察其处理偶氮染料活性红X-3B的脱色能力。电催化产H2O2实验、产Fe2+实验、产·OH实验以及羟基自由基清除实验结果表明,本实验成功构建了在线产生两种芬顿试剂(Fe2+/H2O2)的感应电芬顿体系,并且活性红X-3B主要通过感应电芬顿体系中的所生成的·OH进行降解。感应电芬顿各因素显著性由大到小顺序为:反应时间、初始pH、电流密度、曝气速率。数学模型回归性较好;在初始pH=3.30、反应时间为124.50min、电流密度为31.5mA·cm-2、曝气速率为2.15L·min-1时,模型预测的脱色率为99.37%,与实际值仅相差0.92%。  相似文献   

9.
传统Fenton氧化法对高盐废水中有机污染物的处理效果不理想。为提高高盐废水中有机污染物的处理效果,在传统Fenton法基础上选用廉价、安全易得的Fe0代替Fe2+参与反应,并创新性地加入硼(B)作为还原剂,以促进Fenton体系对高盐废水中有机污染物(柠檬黄)的降解。结果表明,B/Fe0/H2O2体系对高盐废水中柠檬黄有着很好的去除效果,在盐(Na2SO4)浓度为0.2 mol/L、反应60 min时,柠檬黄的最终降解率达到100%,B、Fe0以及H2O2的最佳投加量分别为0.2 g/L、0.02 g/L和1 mmol/L。B/Fe0/H2O2体系对盐(Na2SO4)浓度在0~0.4 mol/L的废水都有着很好的柠檬黄降解率,且在废水中含有其他不同阴离子组合时...  相似文献   

10.
通过单因素实验探究了Fe0类Fenton氧化处理农药中间体废水过程中的最适Fe0和H2O2投加量、初始pH值和最佳处理时间,研究了处理后出水BOD5/CODCr(B/C)值、体系中亚铁和总铁含量以及·OH的变化规律。结果表明Fe0类Fenton体系中,最适Fe0投加量为6.59 g/L,H2O2投加量为3.33 g/L,初始pH=3,处理时间为50 min, CODCr去除率达到42.50%。相比于传统Fenton体系,Fe0类Fenton体系CODCr 去除率提高了约17%,出水B/C值达到0.34,加速了·OH的产生,H2O2添加量明显减少,铁的利用效率得到提高,可以有效减少含铁污泥的生成。  相似文献   

11.
周自成  李煦  郭琳琳  范小振 《化工进展》2019,38(12):5532-5538
采用化学沉淀法制备了十二烷基硫酸钠(SDS)改性的纳米酸镍(记为NiFe2O4-S),利用X射线衍射(XRD)、红外光谱(FTIR)、能谱(EDS)、透射电镜(TEM)、BET比表面等技术手段对样品进行了表征。采用多相芬顿氧化技术,以亚甲基蓝溶液为模拟污染物废水,研究了SDS对铁酸镍的改性效果、亚甲基蓝溶液初始pH以及催化剂循环使用等不同条件因素对样品类芬顿催化活性的影响。结果显示,经SDS改性后的NiFe2O4-S比纯相NiFe2O4表现出了更优异的催化性能,NiFe2O4-S对酸性(pH=3.5)、近中性(pH=6.5)和碱性(pH=9.5)的亚甲基蓝溶液均有着较好的催化降解效果;NiFe2O4-S具有良好的催化稳定性和重复使用性。对该催化反应体系的作用机理进行了详细探讨,NiFe2O4-S表现出优异的类芬顿催化活性归因于更强的电子转移能力,吸附的SDS能促进H2O2 ? O 2 - 分别与表面Fe3+反应将其还原转化为Fe2+。·OH是直接分解亚甲基蓝的活性物种,反应中NiFe2O4-S表面较高浓度的Fe2+可以有效地把H2O2分解为·OH。SDS增强了催化剂表面对亚甲基蓝的吸附能力,促进了·OH与亚甲基蓝的分解反应。  相似文献   

12.
H2O2 used in the photo-Fenton reaction with iron catalyst can accelerate the oxidation of Fe2+ to Fe3+ under UV irradiation and in the dark (in the so called dark Fenton process). It was proved that conversion of phenol under UV irradiation in the presence of H2O2 predominantly produces highly hydrophilic products and catechol, which can accelerate the rate of phenol decomposition. However, while H2O2 under UV irradiation could decompose phenol to highly hydrophilic products and dihydroxybenzenes in a very short time, complete mineralization proceeded rather slowly. When H2O2 is used for phenol decomposition in the presence of TiO2 and Fe–TiO2, decrease of OH radicals formed on the surface of TiO2 and Fe–TiO2 has been observed and photodecomposition of phenol is slowed down. In case of phenol decomposition under UV irradiation on Fe–C–TiO2 photocatalyst in the presence of H2O2, marked acceleration of the decomposition rate is observed due to the photo-Fenton reactions: Fe2+ is likely oxidized to Fe3+, which is then efficiently recycled to Fe2+ by the intermediate products formed during phenol decomposition, such as hydroquinone (HQ) and catechol.  相似文献   

13.
The catalytic behavior of the Fe3+/Fe2+ system in the electro-Fenton degradation of the antimicrobial drug chlorophene has been studied considering four undivided electrolytic cells, where a Pt or boron-doped diamond (BDD) anode and a carbon felt or O2-diffusion cathode have been used. Chlorophene electrolyses have been carried out at pH 3.0 under current control, with 0.05 M Na2SO4 as supporting electrolyte and Fe3+ as catalyst. In these processes the drug is oxidized with hydroxyl radical (OH) formed both at the anode from water oxidation and in the medium from electrochemically generated Fenton's reagent (Fe2+ + H2O2, both of them generated at the cathode). The catalytic behavior of the Fe3+/Fe2+ system mainly depends on the cathode tested. In the cells with an O2-diffusion cathode, H2O2 is largely accumulated and the Fe3+ content remains practically unchanged. Under these conditions, the chlorophene decay is enhanced by increasing the initial Fe3+ concentration, because this leads to a higher quantity of Fe2+ regenerated at the cathode and, subsequently, to a greater OH production from Fenton's reaction. In contrast, when the carbon felt cathode is used, H2O2 is electrogenerated in small extent, whereas Fe2+ is largely accumulated because the regeneration of this ion from Fe3+ reduction at the cathode is much faster than its oxidation to Fe3+ at the anode. In this case, an Fe3+ concentration as low as 0.2 mM is required to obtain the maximum OH generation rate, yielding the quickest chlorophene removal. Chlorophene is poorly mineralized in the Pt/O2 diffusion cell because the final Fe3+–oxalate complexes are difficult to oxidize with OH. These complexes are completely destroyed using a BDD anode at high current thanks to the great amount of OH generated on its surface. Total mineralization is also achieved in the Pt/carbon felt and BDD/carbon felt cells with 0.2 mM Fe3+, because oxalic acid and its Fe2+ complexes are directly oxidized with OH in the medium. Comparing the four cells, the highest oxidizing power regarding total mineralization is attained for the BDD/carbon felt cell at high current due to the simultaneous destruction of oxalic acid at the BDD surface and in the bulk solution.  相似文献   

14.
Nafion supported catalytic membranes were found to be effective in the partial oxidation of propane to oxygenates with H2O2 in the presence of Fe2+ under mild conditions. The influence of [Fe2+] and [H2O2] on the reaction rate and product distribution in the temperature range 80–110°C has been ascertained. A reaction pathway involving the electrophilic activation of propane on superacid sites and subsequent reaction of the activated propane molecules with OH radicals generated by Fe2+/H2O2 Fenton system is discussed.  相似文献   

15.
Ta3N5 was synthesized by nitridation of Ta2O5 under NH3 flow at 700 °C. The catalyst was pure Ta3N5 according to X-ray diffraction (XRD), and was about 5 nm in size with a BET specific surface area 52.8 m2/g. When Ta3N5 was added to Fe3+/H2O2 solution (known as Fenton-like system), most Fe3+ were adsorbed on the Ta3N5 surface and could not react with H2O2 in the dark, which is different from the general Fenton reaction. Under visible light irradiation, adsorbed Fe3+ ions were reduced to Fe2+ rapidly and Fe2+ were reoxidized by H2O2 on the Ta3N5 surface, thus a fast Fe3+/Fe2+ cycling was established. Kinetics and ESR measurements supported this mechanism. The Ta3N5/Fe3+/H2O2 system could efficiently decompose H2O2 to generate hydroxyl radicals driven by visible light, which could accelerate significantly the degradation of organic molecules such as N,N-dimethylaniline (DMA), and 2,4-dichlorophenol (DCP). A mechanism was proposed for iron cycling on the basis of experimental results.  相似文献   

16.
为提高Fe2+活化过硫酸钠(SPS)降解亚甲基蓝(MB)效率,设计了一种毛细管微反应器。以磁力搅拌和静置反应系统作为对比,研究了在毛细管微反应器中MB与硫酸亚铁(FeSO4)混合液pH值、FeSO4浓度、SPS浓度、进料流量以及毛细管长度对MB降解率的影响。结果表明:随着MB与FeSO4混合液的pH值的增大,MB降解率先升高后降低;随着FeSO4浓度的增加,MB降解率先升高后降低;当SPS浓度从0.2 mmol·L-1增加到1.8 mmol·L-1时,MB降解率显著升高,继续增加SPS浓度,MB降解率缓慢上升。随着进料流量和水浴温度的增加,MB降解率升高;随着毛细管长度的增加和进料流量的减小,MB降解率升高。在相同反应条件下,毛细管微反应器氧化降解性能优于磁力搅拌和静置反应系统。当MB浓度为0.2 mmol·L-1,MB与FeSO4混合液pH值为3、FeSO4浓度为1.4 mmol·L-1、SPS浓度为1.8 mmol·L-1、进料流量为1 mL·min-1、毛细管长度为6.32 m时MB降解率可达85.92%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号