首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
对径向流吸附器内变压吸附(PSA)制氧的变质量流动规律进行研究,有助于准确掌握吸附过程及床层内的变量因素对制氧性能的影响。对π型向心径向流吸附器建立气固耦合的两相吸附模型,并对其PSA制氧过程进行了数值模拟研究,得到了床层内氧气浓度分布、温度分布以及产品气浓度的变化规律。结果表明:首次循环结束时床层内氧气最高摩尔分数可达66.02%,回收率29.2%。非稳定循环期间,氧气摩尔分数从66.02%升高至97.5%,回收率从29.2%提高至38.5%。循环达到稳定后,床层内氧气摩尔分数最高可达98.6%,回收率38.9%左右,且达到稳定状态后床层内气固两相温差减小,逐渐达到热平衡。获得了吸附器内部气体与吸附剂两相间的传质、传热过程,为π型向心径向流吸附器用于PSA制氧提供技术支持。  相似文献   

2.
真空变压吸附制氧是一个复杂的动态过程,深入了解真空变压吸附制氧过程中吸附器内的流动特性是吸附器设计与完善的基础.基于Fluent中的多孔介质模型,通过用户自定义函数功能,建立了真空变压吸附制氧用径向流吸附器的二维轴对称模型,研究了真空变压吸附首次和第二次循环中径向流吸附器的流动特性,对比分析了吸附剂颗粒直径、流道截面积...  相似文献   

3.
径向流吸附器通常存在流体沿轴向床层分布不均匀,从而导致吸附剂利用率下降和空分系统运行安全性问题。通过对表征Z型径向流吸附器流动特性的微分控制方程中包含的结构参数进行量纲1化,系统地研究了各结构参数对吸附器内流体分布的影响。同时针对实验室已有的一台Z型径向流吸附器,采用理论求解和实验数据对照的方法验证了模型的可靠性。结果表明,减小吸附床层轴向高度和吸附剂颗粒直径能显著提高Z型径向流吸附器内流体分布的均匀性;当空气的运动黏度和其他结构参数不变时,吸附器的空气处理量在一定范围内变化对吸附床层内流体的均匀性影响不大。  相似文献   

4.
径向流吸附器流体流动特性及其结构参数优化   总被引:2,自引:1,他引:2       下载免费PDF全文
径向流吸附器通常存在流体沿轴向床层分布不均匀,从而导致吸附剂利用率下降和空分系统运行安全性问题。通过对表征Z型径向流吸附器流动特性的微分控制方程中包含的结构参数进行量纲1化,系统地研究了各结构参数对吸附器内流体分布的影响。同时针对实验室已有的一台Z型径向流吸附器,采用理论求解和实验数据对照的方法验证了模型的可靠性。结果表明,减小吸附床层轴向高度和吸附剂颗粒直径能显著提高Z型径向流吸附器内流体分布的均匀性;当空气的运动黏度和其他结构参数不变时,吸附器的空气处理量在一定范围内变化对吸附床层内流体的均匀性影响不大。  相似文献   

5.
立式分层并联径向流吸附器流场数值模拟   总被引:1,自引:1,他引:0       下载免费PDF全文
芮道哲  张学军  陈瑶  邱利民  张小斌 《化工学报》2015,66(11):4485-4492
为降低径向流吸附器高度对均布的影响,提出了径向流吸附器的分层并联设计方法,并建立了径向流分层并联吸附器的数值计算模型。应用计算流体力学方法对分层并联式径向流吸附器中流体在床层内的流场进行了数值模拟计算,并在相同条件下与增高改进后的径向流吸附器的流场分布进行对比。结果表明,分层并联设计方法的均匀度相比于增高方法的均匀度提高了80%,有效清除了径向流吸附器过高对床层内流体均布的负面影响,且对分层并联径向流吸附器上部单元床层厚度进一步优化,达到了上下单元同时穿透的目的。  相似文献   

6.
祝显强  刘应书  杨雄  刘文海  李永玲 《化工学报》2016,67(10):4264-4272
针对快速变压吸附制氧浓度和回收率低问题,提出了用于提高产氧浓度和回收率的中间气两步充压的快速真空变压吸附流程,并对该流程进行了研究。结果表明:在快速真空变压吸附制氧过程中,中间气先在出气端充压可以有效提高产氧浓度,之后再在进气端充压可提高氧气回收率。出气端充压前中间气压力及氧浓度和进气端充压后床层压力是影响产氧浓度和回收率提高的关键参数。当吸附和解吸压力分别为240、60 kPa时,循环氧气回收率为34.57%,且每天产单位吨氧需吸附剂量为61.18 kg·TPD-1。  相似文献   

7.
针对快速变压吸附制氧浓度和回收率低问题,提出了用于提高产氧浓度和回收率的中间气两步充压的快速真空变压吸附流程,并对该流程进行了研究。结果表明:在快速真空变压吸附制氧过程中,中间气先在出气端充压可以有效提高产氧浓度,之后再在进气端充压可提高氧气回收率。出气端充压前中间气压力及氧浓度和进气端充压后床层压力是影响产氧浓度和回收率提高的关键参数。当吸附和解吸压力分别为240、60 k Pa时,循环氧气回收率为34.57%,且每天产单位吨氧需吸附剂量为61.18 kg·TPD-1。  相似文献   

8.
陈勇  由宏新 《化工进展》2013,32(3):521-526
基于Fluent的多孔介质模型,建立了变压吸附制氧发生器的立式填充床模型。采用用户自定义函数功能,以反映吸附传质、传热,并将多孔介质单相模型整合为更精确的气固两相耦合模型。在此基础上,模拟了吸附颗粒直径对气相压力、速度、床层压降以及氧气分离浓度、回收率等参数的影响情况。结果表明:床层压降随颗粒直径的增大而减小;床层对入口急流的抗穿透性能随颗粒直径的增大而减小;相同条件下,采用较小颗粒直径能够提高氧气分离浓度、回收率,原因在于小颗粒直径降低了床层内气体的流速,增加了吸附时间,促进了吸附的进行。  相似文献   

9.
建立了一套半工业性两塔真空变压吸附制氧试验装置,提出了2种循环操作时序,循环一的特征在于具有同时逆向抽真空与清洗、同时逆向抽真空与均压升2个重叠步骤;循环二具有同时逆向抽真空与清洗、同时进气升压与均压升2个重叠步骤.试验结果显示,采用13LiX沸石分子筛,2种循环流程获得体积分数为92.1%的氧气时,回收率分别达到58.9%和64.8%,氧气产率分别为80.9 m3/(h·t)和86.3 m3/(h·t).在较低压比的情况下,2种不同循环流程均能获得较好的制氧性能,吸附塔的最高吸附绝对压力分别约为148 kPa和149 kPa,最高压比分别为3.44和3.39.  相似文献   

10.
邢福祥 《化工机械》2005,32(2):106-109
介绍了薄平板型固定床吸附器在循环通风管路系统中的使用特性和应用效果。该吸附器通过内置数片小间距的平行薄网板,整体安装在循环通风管路系统内来完成气体净化和吸附。该吸附器具备气固两相接触面积大、床层气阻小、结构简单和操作方便等特点,非常适合于相对封闭环境内有害气体的清除。  相似文献   

11.
根据变压吸附分离原理,建立数学模型,并利用Aspen Adsim软件对三塔VPSA富氧工艺过程进行模拟。通过调整模拟参数考查了循环周期、均压时间等对富氧效果的影响。为了降低工艺能耗,一方面在保证产品气氧气浓度以及回收率的基础上尽量降低吸附压力与解吸压力比,另一方面当吸附塔压力低于大气压力时,借助于压降驱动力采取常压进气方式。结果表明:在本模拟工艺中,当循环时间75 s,均压时间4 s,吸附、解吸压力比为2.88时,得到产品气氧气体积分数为94.6%,回收率为56.6%。  相似文献   

12.
双回流真空变压吸附(Duplex VPSA)是一种中间位置进料,塔顶和塔底分别采用轻、重组分回流的变压吸附过程,能够同时得到较高体积分数的轻、重组分产品。利用Aspen Adsorption模拟软件,以Li-X氧分子筛为吸附剂,对两塔Duplex VPSA空气分离进行了模拟研究。每个循环包含进料/轻组分回流、均压升、重组分产品升压、重组分回流/吸附、均压降、逆向降压6个步骤,在吸附压力200 kPa和解吸压力57 kPa下能够得到体积分数98.08%的氧气和体积分数97.57%的氮气,回收率分别为90.32%和98.89%。研究了不同进料位置、进料流量和回流比对产品气的体积分数和回收率的影响。结果表明,Duplex VPSA过程能够同时得到较高体积分数和回收率的氧气和氮气。  相似文献   

13.
徐徜徉  曹义鸣  赵勇  邓麦村 《化工进展》2003,22(Z1):137-140
针对膜分离(MS)技术与变压吸附(PSA)技术在以空气为原料制氧方面各自存在的优缺点,尝试将二者相结合用于制取高浓度(体积分数》99.5%)氧气.通过实验证明了采用MS-PSA流程用于制取高浓度氧是行不通的.而通过PSA-MS流程可得到体积分数为99.51%的氧气.结合实验数据进行模拟计算,得出了PSA-MS制高浓度氧最佳结合点.  相似文献   

14.
针对变压吸附空分制氧装置的微型化趋势,研制了一种新型六塔旋转变压吸附制氧装置。本文介绍了新型装置的工作原理,且通过实验研究了六塔旋转PSA制氧过程中几个主要工艺参数对系统性能的影响。实验表明,提高转速,产品氧的纯度随之先提高后降低,对应于每个进料流量都存在一个获得最高氧纯度的最佳转速;而且,进料流量小时氧纯度较低,进料流量大时回收率降低,因此存在一个最佳进料流量;充压时间与吸附时间的比值对产品氧浓度的影响非常显著;与常见的PSA装置相比,均压步骤明显地提高了这种新型结构PSA装置的氧纯度和氧回收率。这种装置的高径比小,循环时间短,可获得92%的氧产品。  相似文献   

15.
《小氮肥》2015,(9)
<正>某公司造气岗位共有33台造气炉,为节能降耗,新建了1套变压吸附制氧装置,提供含量为80%(体积分数,下同)的氧气供造气炉使用,以提高造气炉中氧气浓度,达到造气炉中煤炭充分气化的目的。在吹风阶段提高氧气浓度,减少吹风;在制气阶段补充热量,提高效率。国内其他同类富氧造气企业都采用低压低浓度氧,纯氧含量约为40%,入炉氧浓度约25%,而该公司用含量为80%的纯氧减压,入炉配比可达到35%。此种  相似文献   

16.
针对乙烯氧化制环氧乙烷固定床反应器,利用YS-7型银催化剂的宏观反应动力学模型和固定床反应器拟均相二维数学模型方法,建立了催化剂床层的质量、热量平衡方程组,并采用Crank-Nicholson差分法对该偏微分方程组进行了数值计算。在模拟计算中,通过改变反应器汽包温度、反应器入口原料气温度、空速以及反应器入口原料气中乙烯、氧气、1,2-二氯乙烷的摩尔分数等工艺条件,系统地研究了以上各工艺条件单因素变化时对整个银催化剂床层温度场的影响。结果表明:随着固定床反应器汽包温度、入口原料气中乙烯、氧气摩尔分数的升高,以及固定床反应器中空速、入口原料气的温度及1,2-二氯乙烷摩尔分数的降低,银催化剂床层温度均有所升高,特别是床层"热点"区域的温度升高较明显。  相似文献   

17.
CMS+ZMS二级变压吸附制纯氧的优化研究   总被引:1,自引:0,他引:1  
胡新影  周瑞兴 《广东化工》2006,33(1):60-63,66
文利用电路网络模型对变压吸附制氧工艺流程模拟并优化操作参数后,用碳分子筛吸附空气中大部分的Ar和N2,解吸出的大约70%左右的氧气作为沸石分子筛单元的进料气,在沸石分子筛中除去余下的N2,即可得到产品回收率为28.4%,浓度为99.06%的纯氧。通过模拟发现,在保证氧气纯度的前提下,通过筛选工艺流程,优化阀系数、操作时间、吸附和脱附的压力,从而提高氧气回收率,降低了制纯氧的成本。  相似文献   

18.
通过对微型制氧流程的实验研究和分析,确定了单节流小流量反吹和均压工艺的最佳实验参数,在保证产氧浓度和氧气最大回收率的条件下,该工艺流程吸附压力最低。结果表明:小流量反吹工艺可以提高产品气中氧气浓度(体积分数),吸附塔出口端单向阀可以有效降低吸附压力;双节流反吹工艺虽然可以提高产品气中氧气浓度,但节流孔径限制了产品氧气输出,导致吸附压力升高;单节流小流量反吹工艺和均压工艺中均压时间与瞬洗时间均存在最佳值。  相似文献   

19.
采用CFD-DEM的方法对气固循环流化床提升管内的气固流动特性进行模拟,建立了基于图像处理的分析颗粒聚团的方法,重点研究了颗粒聚团在床层内的整体分布以及颗粒聚团的特性,包括颗粒聚团的倾角、球形度以及长短轴比的概率密度分布以及它们在床层内的轴向和径向上的分布特性。研究结果表明,聚团在床层内的分布较宽,较小的聚团居多,边壁区域附近易形成较大的聚团。聚团的数目沿床层高度方向先增加后减少。聚团倾向于以偏离球形聚团、较大的倾角形式存在,其长短轴比值在2~4之间。  相似文献   

20.
工业氦气主要通过深冷、膜分离和变压吸附(PSA)耦合从天然气提取,其中PSA是获得高纯He的关键。吸附过程模拟可以克服实验局限,有效指导工程设计、优化工艺条件。以体积分数90%的粗He为原料,利用Aspen Adsorption软件建立He/CH4 单塔PSA模型,获得穿透曲线。以此为基础,建立双塔分离流程,分析吸附、顺放、逆放、冲洗、升压步骤中吸附塔内气相组成的变化,五步最佳操作时间分别为 60、180、30、60和180 s。在三塔流程中,一个循环周期的最佳吸附时间和均压时间分别为135 s和90 s,产品纯度可达98.42%,回收率达60.45%。在五塔流程中,考虑到各步骤时间的匹配及生产的连续性,需要对一个周期内的循环时间进行优化。循环时间为300~340 s时,产品纯度达到99.07%以上。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号