首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
采用浸渍沉淀法制备了Ru/NaY、Ru/HY和Ru/C等钌催化剂,研究了其催化对苯二酚加氢制备1,4-环己二醇的活性。利用XRD和BET等手段对样品进行了表征。不同载体负载的催化剂上对苯二酚的转化率顺序为:Ru/NaYRu/HYRu/C。以Ru/NaY为催化剂,对苯二酚为原料,乙醇为溶剂,制备了1,4-环己二醇,对苯二酚的转化率99.8%。  相似文献   

2.
采用化学还原法制备了负载型Ru-B/γ-Al_2O_3非晶态合金催化剂,并将其应用于对苯二酚液相加氢制备1,4-环己二醇反应。采用X射线衍射仪(XRD)、透射电子显微镜(TEM)、热重分析(TGA)、物理吸脱附技术对催化剂的性能进行了表征。研究了Ru负载量、反应温度、氢气压力、反应时间对催化剂性能的影响。结果表明,在对苯二酚加氢反应中,最佳优化反应条件为:Ru质量分数为1.0%,反应温度为140℃,反应时间为3.5 h,氢气压力为3.0 MPa。此时,对苯二酚转化率为86.23%,目标产物1,4-环己二醇选择性为86.54%。且该催化剂具有较好的热稳定性,具有良好的工业化应用前景。  相似文献   

3.
以不同硅铝比的HZSM-5为载体,采用化学还原法与沉淀法制备了负载型Ru/HZSM-5催化剂。通过XRD与TEM对催化剂进行了表征。系统考察了制备方法、硅铝摩尔比、温度、氢气压力、时间和Ru负载量对对苯二酚加氢的影响。由于化学还原法制备的催化剂中Ru粒径较小且分散均匀,得到了含有少量硼的非晶态钌硼合金,其催化性能明显优于沉淀法制备的Ru/HZSM-5催化剂。最佳优化反应条件为:硅铝摩尔比为740,反应时间为2.5 h,反应温度为140℃,氢气压力为2.5 MPa,Ru质量分数为1.0%,此时,对苯二酚转化率为100%,目标产物1,4-环己二醇选择性为90.13%。最后,对该催化体系下对苯二酚加氢的反应路径进行了分析。  相似文献   

4.
通过浸渍-化学还原法制备出了一系列低负载量的钌基催化剂,在Ru-B二元催化体系中加入少量W,催化剂催化性能显著提高,且采用反加法、超声波辅助法及添加分散剂PEG对载体NaY进行涂覆,进一步改良了Ru催化剂的加氢性能。采用XPS、H2-TPD、XRD、SEM、ICP-OES等一系列表征手段对催化剂物相结构、组成、形貌等进行详细表征,发现采用反加法、添加W、超声波辅助、使用PEG对载体NaY进行涂覆制备的催化剂活性金属粒子分散更均匀,活性位数量更多。以对苯二酚加氢制1,4-环己二醇为探针反应对所制备的催化剂进行活性测试,发现Ru-W-B/NaY-IUP(1500)0.6加氢性能最为优越,对苯二酚转化率为99.7 %,1,4-环己二醇选择性为92.3 %,而钌负载量仅为0.45 %。此外,研究了反应液pH值对加氢反应的影响,发现反应液pH值对反应结果的影响巨大,当反应液呈碱性时,其反应速率得到极大提高,说明碱性环境更有利于对苯二酚加氢制1,4-环己二醇。  相似文献   

5.
通过超临界CO2介质中对苯二酚催化加氢的研究,探讨了催化剂、超临界CO2压力等反应条件的影响,研究了Pt/C、Pd/C、Ru/C和Rh/C几种催化剂对反应转化率和主要产物1,4-环己二醇选择性的影响,结果表明:Ru/C催化剂的活性最好。研究了超临界CO2压力、反应温度、氢气压力、反应时间等对反应转化率和选择性的影响,根据产物的选择性对该反应路径进行了初步分析。  相似文献   

6.
通过浸渍-化学还原法制备出一系列低负载量的钌基催化剂,在Ru-B二元催化体系中加入少量W,催化性能显著提高。采用XPS、H2-TPD、XRD、SEM、ICP-OES对催化剂物相结构、组成、形貌进行表征,发现采用反加法、添加W、超声波辅助、使用聚乙二醇(PEG)对载体NaY进行涂覆制备的催化剂活性金属粒子分散更均匀,活性位数量更多。以对苯二酚加氢制1,4-环己二醇为探针反应对所制备的催化剂进行活性测试,发现Ru-W-B/NaY-IUP(1500)0.6〔I代表反加法,U代表在制备过程中使用超声波,P代表制备过程中使用了PEG,1500为PEG相对分子质量,0.6为PEG用量(0.6 g)〕加氢性能最为优越,对苯二酚转化率为99.7%,1,4-环己二醇选择性为92.3%,而钌的负载量(以钌在催化剂中所占质量分数计,下同)仅为0.45%。此外,研究了反应液pH对加氢反应的影响,发现反应液pH对反应影响大,当反应液呈碱性时,反应速率得到提高。  相似文献   

7.
乔闪闪  丁明  王磊 《工业催化》2018,26(7):28-31
采用炭改性Al_2O_3(CCA)为载体,通过吸附-沉淀法制备Ru/CCA催化剂,以1,4-丁炔二醇加氢制1,4-丁二醇为探针反应,考察Ru/CAA催化剂的加氢性能,并对催化剂进行XRD和H2-TPR表征。活性评价结果表明,在110℃和4.0 MPa条件下,Ru/CAA催化剂上1,4-丁炔二醇转化率100%,1,4-丁二醇选择性88%。表征结果表明,采用炭改性可提高催化剂的水热稳定性,同时炭的加入还增强了活性组分与载体的相互作用。  相似文献   

8.
在低温、低压条件下,以Ru/C为催化剂,利用对苯二甲酸二甲酯催化加氢制备1,4-环己烷二甲酸二甲酯。考察了溶剂、反应温度、反应压力、催化剂用量对对苯二甲酸二甲酯加氢的影响。实验结果表明,在乙酸乙酯用量为100 mL、对苯二甲酸二甲酯质量为10. 0 g、催化剂质量为0. 5 g、100℃和4 MPa条件下反应20 min,对苯二甲酸二甲酯的转化率为99. 9%,1,4-环己烷二甲酸二甲酯的选择性为98. 9%。  相似文献   

9.
以硝酸镍为镍源,分别以NH3.H2O,NH4HCO3,NH3.H2O+NH4HCO3为沉淀剂采用沉淀法制备镍/硅藻土催化剂,用于1,2-环己二醇脱氢制备邻苯二酚,考察了不同沉淀剂、焙烧温度、沉淀温度制备的催化剂对1,2-环己二醇脱氢反应性能的影响,并通过XRD,BET,CO2-TPD(热设计功耗)等方法对催化剂进行了表征。结果表明:不同的沉淀剂对镍的分散度、孔结构及表面碱量都有影响,以NH3.H2O+NH4HCO3复合沉淀剂制备的镍/硅藻土催化剂上活性组分镍晶粒度小、分散度较高,催化剂平均孔径较大,催化剂表面碱中心数目多、碱量大,表现出良好的催化活性和邻苯二酚选择性。另外,催化剂适宜沉淀温度为90℃、焙烧温度为350℃。上述适宜条件制备的催化剂在320℃下用于1,2-环己二醇脱氢制备邻苯二酚,1,2-环己二醇转化率达到99.1%,邻苯二酚选择性达到86.8%。  相似文献   

10.
以CuCl_2/FeCl_3水溶液为催化剂,氧气为氧化剂,正己醇为溶剂进行2,3,6–三甲基苯酚(TMP)气液液三相催化氧化制备2,3,5-三甲基-1,4-对苯醌(TMQ)的反应。通过对反应产物进行结构鉴定和定量分析,推测反应途径;同时考察反应时间、反应温度、催化剂用量、FeCl_3加入量对反应产物组成的影响。结果表明反应过程中会生成2,3,6-三甲基-4-氯苯酚、2,3,5-三甲基-1,4-对苯二酚和2,2,3,3,5,5-六甲基-4,4-联苯二酚等多种中间产物和副产物。在CuCl_2催化体系中加入助催化剂FeCl_3可使主产物TMQ的选择性由70.39%提高到82.91%。研究最后提出了一个包含平行和连串反应的反应网络。  相似文献   

11.
以碳纳米管为载体制备Ru/CNTs催化剂,系统考察反应温度、反应压力、反应时间、催化剂用量、溶剂种类、助剂和催化剂重复使用性能等对催化对苯二胺合成1,4-环己二胺的影响,同时对催化反应机理进行探讨。结果发现,反应为串联反应,较高的反应温度、反应压力、催化剂用量和较长的反应时间利于提高转化率,但过高的反应温度、反应压力和过长的反应时间会导致副反应发生,产物收率下降。适宜的反应条件为:反应温度120℃,反应压力6 MPa,反应时间3 h,对苯二胺10 g,40 mL异丙醇作溶剂,助剂氢氧化锂添加量0.1 g,5%Ru/CNTs催化剂用量0.5 g,此条件下,对苯二胺转化率100%,1,4-环己二胺收率93.87%,催化剂重复使用11次后仍保持较高活性。  相似文献   

12.
采用水热一步法在介孔SBA-15载体上负载杂多酸,并进一步负载金属Ru制备具有酸性和加氢性能的双功能催化剂。用BET、XRD、TEM、ICP、NH3-TPD对其结构性质进行表征。考察了反应时间和反应温度对纤维素催化反应的影响。在190 ℃、16 h,5 MPa H2的条件下,纤维素转化率达到55.2%,山梨醇的收率为36.8%。催化剂的循环使用表明杂多酸在载体上能够稳定存在,不易流失。制备的双功能催化剂具有很好的稳定性和催化活性。  相似文献   

13.
周娅芬 《应用化工》2011,40(5):819-821,825
采用浸渍、水热还原的方法制备了Ru/A lOOH催化剂,进行了XRD表征。以水作溶剂,考察了该催化剂对丙酸甲酯的催化加氢性能。结果表明,催化剂中金属以Ru0存在,并且很好的分散在载体A lOOH上;反应时间、温度、氢气压力和溶剂体积对丙酸甲酯加氢转化率和目标产物丙醇选择性都有很大的影响。在180℃、氢压5 MPa条件下,反应10 h,丙酸甲酯的转化率达到85.9%,丙醇的选择性为94.0%。  相似文献   

14.
探讨了以H-ZSM-5沸石催化剂,在无溶剂条件下由对苯二酚和乙酰胺为原料直接催化合成对乙酰氨基酚。考察了催化剂用量、反应原料摩尔比、反应温度、反应时间对转化率及选择性的影响。结果表明,H-ZSM-5对于该反应具有良好的催化性能。在催化剂用量为30%、对苯二酚和乙酰胺摩尔比为1∶3.0、反应温度300℃、反应时间2.5 h的条件下,对苯二酚的转化率达到98.7%,且产物对乙酰氨基酚的选择性为90.3%。  相似文献   

15.
潘丽娟  张鹏  王昭文 《工业催化》2015,23(7):567-569
氢化丁腈橡胶具有良好的耐油性和耐氧性,广泛应用于汽车和石油行业,通过丁腈橡胶溶液均相催化加氢制得,采用铑类和钯类均相催化剂。考察不同溶剂、催化剂及m(Ru)∶m(丁腈橡胶)对丁腈橡胶加氢的影响。采用红外光谱法和核磁法对氢化丁腈橡胶的结构进行分析,筛选出价廉、活性高和选择性高的催化剂。结果表明,在丁腈橡胶加氢反应中,丁酮可作为溶剂,Ru(PPh3)3Cl2催化剂具有高活性和高选择性。在丁酮200 m L、丁腈橡胶5 g、Ru(PPh3)3Cl2催化剂、m(Ru)∶m(丁腈橡胶)=0.000 20∶1、反应温度140℃、氢压8.0 MPa和反应时间4 h条件下,加氢度和选择性均达到100%,具有与Rh(PPh3)3Cl相当的催化性能。  相似文献   

16.
以生物质衍生的当归内酯与2-甲基呋喃为原料,杂多酸为催化剂,经羟烷基化或烷基化反应生成4,4-二(5-甲基呋喃-2-基)戊酸,然后加氢制得可再生生物柴油前驱体4,4-二(5-甲基四氢呋喃-2-基)-1-戊醇和双(5-甲基四氢呋喃-2-基)乙烷。首先,考察了硅钨酸、磷钼酸和硅钼酸催化剂对羟烷基化/烷基化反应的影响,并对催化剂用量、反应温度和时间进行了优化,结果表明,硅钨酸的催化性最高,在反应温度为60 ℃、硅钨酸的用量为0.05 g、反应时间为60 min条件下4,4-二(5-甲基呋喃-2-基)戊酸产率达到70.5%。然后,考察了Pd/C、Ru/C和Pt/C催化剂对当归内酯与2-甲基呋喃羟烷基化/烷基化产物的加氢反应,Ru/C催化剂表现出最好的活性和选择性,4,4-二(5-甲基四氢呋喃-2-基)-1-戊醇和双(5-甲基四氢呋喃-2-基)乙烷产率分别为60.5%和24.6%。最后对Ru/C催化剂的稳定性进行了考察,在24 h的反应时间内催化剂表现出良好的稳定性,活性没有明显下降。获得的4,4-二(5-甲基四氢呋喃-2-基)-1-戊醇和双(5-甲基四氢呋喃-2-基)乙烷混合物可作为柴油前驱体。  相似文献   

17.
施颖  费国霞 《工业催化》2016,24(8):78-82
2,5-二甲氧基苯基乙胺是一种有机合成中间体,在医药和精细化工行业具有重要价值。系统研究有机均相催化体系中以负载型催化剂Ru/AC和Ru-Pd/AC对2-(2,5-二甲氧基苯基)硝基乙烯进行催化加氢制备2,5-二甲氧基苯基乙胺。结果表明,采用Ru/AC催化体系,在氢压5.0 MPa、Ru浓度4.9×10-3mol·L~(-1)、反应时间5 h和反应温度150℃条件下,可以获得纯度较高的CC加氢与硝基完全加氢的目标产物,转化率达到100%,目标产物选择性可达93%;采用Ru-Pd/AC催化体系,在氢压3.0 MPa、Ru和Pd总浓度2.46×10-3mol·L~(-1)、反应时间5 h和反应温度190℃条件下,转化率可以达到100%,目标产物选择性为84%。反应结束后,抽滤即可分离催化剂和产物。  相似文献   

18.
采用软模板法制备出多孔碳材料,以此为载体采用浸渍法制备了Ru/C催化剂,用于硝基苯与苯甲醇“一锅法”合成N-亚苄基苯胺中。利用XRD、SEM、TEM等方法对催化剂进行了表征。考察了Ru负载量对催化剂催化性能的影响,并对反应条件进行了优化。结果表明,Ru负载量为5.0wt%时Ru/C催化剂具有最佳的催化活性和选择性。在实验优化条件下反应22h,硝基苯转化率为100%,N-亚苄基苯胺选择性可达94.1%。  相似文献   

19.
相转移催化法合成1,4-二丁氧基苯   总被引:2,自引:0,他引:2  
宫红  卞玉波  姜恒 《化工科技》2010,18(3):1-3,24
以水为溶剂,在相转移催化剂四丁基溴化铵和氢氧化钾存在的条件下,对苯二酚和溴代正丁烷反应合成了1,4-二丁氧基苯。通过对水的用量、相转移催化剂种类及用量和反应时间的考察,得出了较适宜的合成条件:对苯二酚0.1 mol,溴代正丁烷0.21 mol,氢氧化钾0.21 mol,水10 mL,相转移催化剂四丁基溴化铵用量为1.5 mmol,反应时间4 h,所得产率可达94%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号