共查询到20条相似文献,搜索用时 125 毫秒
1.
航段和航路点对网络正常运行具有重要意义, 正确识别关键航段和关键航路点, 并分析各个指标对航段或航路点的重要程度的关联程度有利于针对性地提升航路网络的抗打击能力. 为改善航路网络对各种突发情况的弱“抵抗力”情况, 从静态指标和动态指标两个方面入手, 采用熵权法从数据本身的波动程度出发确定静态指标和动态指标的权重, 并采用优劣解距离法通过计算连边的最优和最劣解, 得到各个航段和航路点的综合得分. 并继续分析各个指标之间及指标与航段或航路点综合得分之间的关联度, 结果表明各个指标之间都相对独立, 但各个指标与航段或航路点得分的关联度较高, 该结论为航路网络结构优化提出改进依据. 相似文献
2.
蛋白质的关键性与它在生物网络中对应节点的拓扑特性紧密相关. 把关键蛋白质识别看作是一类特殊的模式识别, 以分子之间量化的关系——拓扑参数作为识别依据: 从相关分析出发对蛋白质网络节点的关键性与其主要拓扑参数的相互关系进行研究, 发现参数对节点关键性识别能力的大小与两者之间的相关性有关; 研究复合参数识别度与独立参数识别度、独立参数相关性之间的关系, 提出复合参数的构造方法及异步识别算法. 仿真结果证实, 获得的识别度明显高于其他识别技术. 相似文献
3.
关键节点识别已经成为分析与理解复杂网络特性、结构、功能的有效方式.提出了一种基于节点中心性的关键节点识别算法框架(greedy algorithm for critical node problem, GCNP),根据某种中心性指标选择一个网络的初始点覆盖集;从网络中删除该点覆盖集,迭代选择点覆盖集中使原网络连通节点对增加最小的节点向原网络回添,直至点覆盖集中节点满足用户给定的待删除关键节点数.为了更好地选择初始的节点覆盖集,提出了一种基于局部拓扑信息的节点中心性度量指标(local neighbor centrality, LNC).在16个人工网络和9个真实网络上的实验结果表明:与单独使用各中心性指标相比,采用GCNP算法框架可以提高算法性能.此外,所提的节点中心性度量指标LNC较度中心性(degree centrality, DC)、LocalRank中心性、K壳中心性(K-Shell, KS)、 局部度和中心性(local degree sum centrality, LDS)能更准确地评估节点的重要性. 相似文献
4.
李慧 《小型微型计算机系统》2021,(7):1492-1499
社交网络的关键节点识别是网络数据挖掘的基本研究问题,根据用户角色辨识网络的关键用户对提升网络拓扑结构的稳定性具有重要意义.针对有向社交网络的节点重要度分析和用户角色识别,本文考虑网络的拓扑结构、节点的属性和节点之间的相互影响,提出新度量—拓扑势距离TPD,挖掘网络中的关键节点;提出一种基于二维有向拓扑势的用户角色识别模... 相似文献
5.
社交网络节点中心性测度 总被引:2,自引:0,他引:2
研究节点影响力以及扩大节点影响力的范围在社交网络传播中具有重大意义。为了综合分析节点自身影响力与其潜在影响力,提出了PPI(Personal-Potential Influence,PPI)算法,用介数中心性值,紧密中心性值及k-shell值加权来评估节点自身影响力,再通过节点间的相互影响来评估其潜在影响力。实验结果表明PPI算法在评估节点影响力上有较好的准确性。 相似文献
6.
在现实世界中,大量复杂系统都可以通过抽象的节点和连边构成的网络来加以刻画。作为城市交通系统的重要组成部分,道路交通网络是一个典型的复杂系统,与人们的生活密切相关。道路交通网络中的关键节点识别问题是复杂网络领域研究中的一个经典难题。传统的度中心性算法和PageRank算法在复杂网络的关键节点的识别中具有较好的应用,考虑到道路交通网络中关键节点的特殊性和彼此关联性,在度中心性算法的基础上引入贪心算法的思想,提出了一个基于贪心策略的度中心性关键节点识别方法;同时,在PageRank算法的基础上引入贪心算法的思想,提出了一种基于贪心策略的PageRank关键节点识别方法,从而使道路交通网络中关键节点识别的结果更合理,在交通道路维护保养、规划设计,以及犯罪分子潜逃阻断等领域都有重要的应用价值。通过公开数据集与经典的关键节点识别方法做比较,验证了算法的有效性。 相似文献
7.
关键节点在网络中的重要程度高于其他大部分节点,关键节点挖掘是网络分析的重要研究内容,对网络结构和网络中的关系等研究而言都具有非常重要的意义。已有的关键节点挖掘算法从不同的侧重点进行节点关键性评价,文中基于网络中节点的局部性信息,结合节点与其一阶邻居节点的关联关系,提出了一种有向网络关键节点挖掘算法。该算法在关注节点所处局部环境的同时考虑关联节点间的关联强度及重要性影响,根据局部重要性和关联重要性共同进行关键节点的评价。在实验网络上的影响力传播实验表明,相比于经典的度中心性等关键节点评价算法,所提算法挖掘得到的关键节点对影响力的传播能力更强,说明了算法的准确性。 相似文献
8.
为了能够高效、准确地识别出电力通信网中的关键节点,本文提出了一种基于业务的节点重要度识别方法。首先,通过构建电力通信业务矩阵、邻接矩阵,计算出节点拓扑重要度、业务重要度以及节点失效引起的传输网效能和承载业务的变化值;其次,结合实际传输业务分布情况,采用层次分析法,通过引入节点失效时的传输网网络效能和传输业务损失率得出综合评价指标,进行关键节点识别及脆弱性分析;最后,采用广东和内蒙古实际通信网进行仿真校验及应用分析。仿真表明,与其他算法相对比,本文算法能够比较准确地辨识出实际电力通信网络中的关键节点。同时,在蓄意攻击模式下,对重要节点、重要链路进行脆弱性分析,提出相关建议,有效提升电力通信网安全性。 相似文献
9.
10.
《计算机科学与探索》2019,(8):1319-1330
关键节点组识别问题,因其应用背景广泛,目前已经成为复杂网络微观层面的重要研究内容。随着大数据时代的到来,网络的规模愈加庞大,结构愈为复杂,现有基于仿真模拟和指标度量的传统识别方法受到很大局限,常常陷入局部最优解。同时,基于整数线性规划的识别模型存在不能够区分网络连通分支内部结构的缺陷。因此,亟需从网络整体结构和功能出发对关键节点组识别问题建模进行深入研究。为此,基于0-1二次约束二次规化理论建立识别模型,通过最小化二阶路径内连通节点对的个数,实现区分连通分支内部结构的能力。同时,提出了一种将贪婪搜索和局部置换相结合的启发式算法,以适应大规模网络的关键节点组识别。最后,在多组人工网络和真实网络数据集上实验分析,验证所提出模型和算法的正确性和有效性。 相似文献
11.
12.
13.
利用关键点寻找不同图像之间的一致性是很多图像处理和计算机视觉应用中的一个关键步骤。由于图像中巨量的关键点,因此特征的快速匹配成为了一个瓶颈。文中提出了一种对特征点进行分类比较的方法来加速特征匹配。首先可将SIFY特征分为两类,极大值SIIrF特征和极小值SIFT特征;其次是将SIFT特征和传统角点特征相结合提取特征点并按照角点特征进行分类。实验表明,这种方法在保持原有鲁棒性和精度的情况下,可以较大提高特征匹配速度。 相似文献
14.
网络环境中的身份认证系统,在网络安全中占据着十分重要的位置,对于网络应用的安全有着非常重要的作用。研究和分析系统认证中心CA的设计实现,是保证网络安全通信的必要条件,有着十分重要的现实意义。 相似文献
15.
16.
Object tracking is a fundamental ability for a robot; manipulation as well as activity recognition relies on the robot being able to follow objects in the scene. This paper presents a tracker that adapts to changes in object appearance and is able to re-discover an object that was lost. At its core is a keypoint-based method that exploits the rigidity assumption: pairs of keypoints maintain the same relations over similarity transforms. Using a structured approach to learning, it is able to incorporate new appearances in its model for increased robustness. We show through quantitative and qualitative experiments the benefits of the proposed approach compared to the state of the art, even for objects that do not strictly follow the rigidity assumption. 相似文献
17.
随着我国经济的快速发展,铁路运输在交通运输的地位愈为重要,在传统人工监管无力应对铁路司机安全监督的情况下,使用机器实现自动实时司机行为识别早已成为了一项极有意义的工作。为实现随车部署、实时进行铁路司机行为识别的目的,基于目标框检测算法实现目标检测和关键点检测的融合,搭建了一种可以同时检测司机人体关键点和手机的神经网络。经过网络运行输出人体姿态后,通过分析人体各关节角度和人体关键点与手机目标的位置关系等后处理对六类司机行为进行了分类识别,并通过TensorRT框架对模型进行了模型推理速度的加速和体积上的压缩。实验表明,该模型在嵌入式设备TX2上推理速度为25ms,可以达到较好检测效果下实时运行的目标。实现了实时进行铁路司机行为识别的目的。 相似文献
18.
目的 针对目标在跟踪过程中出现剧烈形变,特别是剧烈尺度变化的而导致跟踪失败情况,提出融合图像显著性与特征点匹配的目标跟踪算法。方法 首先利用改进的BRISK(binary robust invariant scalable keypoints)特征点检测算法,对视频序列中的初始帧提取特征点,确定跟踪算法中的目标模板和目标模板特征点集合;接着对当前帧进行特征点检测,并与目标模板特征点集合利用FLANN(fast approximate nearest neighbor search library)方法进行匹配得到匹配特征点子集;然后融合匹配特征点和光流特征点确定可靠特征点集;再后基于可靠特征点集和目标模板特征点集计算单应性变换矩阵粗确定目标跟踪框,继而基于LC(local contrast)图像显著性精确定目标跟踪框;最后融合图像显著性和可靠特征点自适应确定目标跟踪框。当连续三帧目标发生剧烈形变时,更新目标模板和目标模板特征点集。结果 为了验证算法性能,在OTB2013数据集中挑选出具有形变特性的8个视频序列,共2214帧图像作为实验数据集。在重合度实验中,本文算法能够达到0.567 1的平均重合度,优于当前先进的跟踪算法;在重合度成功率实验中,本文算法也比当前先进的跟踪算法具有更好的跟踪效果。最后利用Vega Prime仿真了无人机快速抵近飞行下目标出现剧烈形变的航拍视频序列,序列中目标的最大形变量超过14,帧间最大形变量达到1.72,实验表明本文算法在该视频序列上具有更好的跟踪效果。本文算法具有较好的实时性,平均帧率48.6帧/s。结论 本文算法能够实时准确的跟踪剧烈形变的目标,特别是剧烈尺度变化的目标。 相似文献
19.
Most interaction recognition approaches have been limited to single‐person action classification in videos. However, for still images where motion information is not available, the task becomes more complex. Aiming to this point, we propose an approach for multiperson human interaction recognition in images with keypoint‐based feature image analysis. Proposed method is a three‐stage framework. In the first stage, we propose feature‐based neural network (FCNN) for action recognition trained with feature images. Feature images are body features, that is, effective distances between a set of body part pairs and angular relation between body part triplets, rearranged in 2D gray‐scale image to learn effective representation of complex actions. In the later stage, we propose a voting‐based method for direction encoding to anticipate probable motion in steady images. Finally, our multiperson interaction recognition algorithm identifies which human pairs are interacting with each other using an interaction parameter. We evaluate our approach on two real‐world data sets, that is, UT‐interaction and SBU kinect interaction. The empirical experiments show that results are better than the state‐of‐the‐art methods with recognition accuracy of 95.83% on UT‐I set 1, 92.5% on UT‐I set 2, and 94.28% on SBU clean data set. 相似文献
20.
上料动态称重系统的研究 总被引:1,自引:0,他引:1
从实际工程出发,对高炉槽下动态定量称重过程进行研究.首先将动态称重系统等效为二阶系统,推导出了其动、静态数学模型,并通过参数辨识的方法,从采集到的信号中辨识出物料的重量. 相似文献