首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 203 毫秒
1.
通过简单加热1-乙基-3-甲基咪唑硫酸乙酯(EMIES)离子液体和3-苯丙酸(C_9H_(10)O_2)的混合物,制备了一系列酸性低共熔溶剂EMIES/nC_9H_(10)O_2(n=0.25,0.5,1,2,4)。通过FTIR,~1H NMR和TGA的表征,确定EMIES/nC_9H_(10)O_2的结构。以该低共熔溶剂为催化剂和萃取剂,H_2O_2为氧化剂,组成氧化-萃取脱硫体系,用于脱除模拟油中的硫化物。考察了原料配比、反应温度、氧硫比(O/S)、低共熔溶剂加入量和不同硫化物对脱硫性能的影响。结果表明,在EMIES和C_9H_(10)O_2摩尔比为1∶1,反应温度为50℃,O/S比为8,低共熔溶剂加入量为1.5 g和模拟油5 ml的反应条件下,二苯并噻吩、4,6-二甲基二苯并噻吩和苯并噻吩的脱除率分别为94.8%、91.6%和46.4%。低共熔溶剂可循环使用6次,活性无明显下降。此外,对该氧化-萃取脱硫体系的脱硫机理进行了探讨。  相似文献   

2.
通过简单加热并搅拌己内酰胺(C6H11NO)和三氟甲磺酸(CF3SO3H)的混合物合成了C6H11NO/nCF3SO3H(n=0.25,0.5,1)型酸性低共熔溶剂。利用红外光谱(FTIR)和氢谱(1HNMR)确定了C6H11NO/nCF3SO3H的结构特征。以C6H11NO/0.5CF3SO3H低共熔溶剂和H2O2组成萃取-氧化脱硫系统,并将其应用于脱除模拟油中的二苯并噻吩(DBT)。研究n(CF3SO3H)∶n(C6H11NO)、反应温度、O/S、C6H11NO/0.5CF3SO3H的加入量和不同类型的硫化物对脱硫效果的影响。实验结果表明,在模拟油体积为5mL、n(CF3SO3H)∶n(C6H11NO)=0.5、反应温度为60℃、 O/S=6、C6H11NO/0.5CF3SO3H的加入量为1.0mL的最佳反应条件下,C6H11NO/0.5CF3SO3H对DBT、4,6-DMDBT、BT和真实油的脱硫率分别达99.4%、98.6%、83.6%和61.6%。红外表征分析了DBT与DESs之间存在相互作用,这种作用促进了氧化脱硫的进程。催化剂5次循环反应以后,其脱硫率仍高达91.9%,表明C6H11NO/0.5CF3SO3H低共熔溶剂具有较高的脱硫性能和稳定性。  相似文献   

3.
赵岩  李秀萍  赵荣祥 《化工学报》2021,72(8):4391-4400
低共熔溶剂广泛应用于氧化脱硫过程,开发新型的低共熔溶剂并进一步提升脱硫效果具有重要的意义。 以氯化胆碱为氢键受体,苯酚为氢键供体合成了ChCl/2Ph型低共熔溶剂。通过FT-IR和1H NMR证实了苯酚和氯化胆碱之间存在氢键作用。以苯酚型低共熔溶剂为萃取剂,双氧水为氧化剂,硫酸钛为催化剂氧化脱除模拟油中的二苯并噻吩。考察了反应温度、V(ChCl/2Ph)/V(Oil)、n(H2O2)/n(S)、催化剂用量以及硫化物类型对脱硫率影响。实验表明最佳反应条件如下:模拟油量为5 ml,V(ChCl/2Ph)/V(Oil)=2∶10, n(H2O2)/n(S)=6,催化剂用量为0.01 g,反应温度为40℃,反应时间180 min。在此条件下脱硫率可以达到98.2%。求得体系的表观活化能为41.9 kJ/mol。含有催化剂的低共熔溶剂相可以重复使用5次且活性没有明显降低。机理研究表明形成钛的过氧化物和Br?nsted酸性是具有较高脱硫活性的关键。  相似文献   

4.
刘晓艺  李秀萍  赵荣祥  张豪 《化工学报》2021,72(11):5653-5663
以己内酰胺-八水氧氯化锆低共熔溶剂为添加组分,采用溶胶-凝胶法合成含锆的硅胶,再经过高温煅烧得到n-ZrO2/SiO2 n=2%,4%,6%) 负载型催化剂。并用红外光谱(FT-IR)、X射线衍射(XRD)、扫描电镜(SEM)、N2吸附-脱附、X射线光电子能谱(XPS)对其进行结构表征,确定ZrO2成功负载到SiO2上。以ZrO2/SiO2为催化剂和吸附剂,H2O2为氧化剂组成催化氧化脱硫体系,并应用于模拟油脱硫。分别考察了氧化锆负载量、反应温度、氧硫比、催化剂加入量及不同类型的硫化物对脱硫效果的影响。实验结果表明,在反应温度为70℃、n(H2O2)/n(S)=4(摩尔比)、4%-ZrO2/SiO2的加入量为0.2 g的最佳反应条件下,氧化脱硫体系对二苯并噻吩(DBT)、4,6-二甲基二苯并噻吩(4,6-DMDBT)和苯并噻吩(BT)的脱除率分别为98.7%、93%和65.9%。且4%-ZrO2/SiO2回收利用5次后,DBT脱除率仍可达到91.8%。  相似文献   

5.
侯良培  赵荣祥  李秀萍 《化工学报》2017,68(4):1614-1621
将适量四乙基氯化铵(TEAC)和三氟乙酸(TFA)通过简单搅拌加热(70℃)的方式合成一系列新型低共熔溶剂TEAC/nTFA(n=0.5,1,1.5,2),并对其结构进行红外光谱和核磁共振氢谱表征分析。以TEAC/nTFA为催化剂和萃取剂,H2O2为氧化剂研究其对模拟油中硫化物的脱除效果。并考察了n(TEAC(/n(TFA(、温度、O/S、不同硫化物等反应条件对脱硫效率的影响。在最佳反应条件下,TEAC/TFA对二苯并噻吩(DBT(,苯并噻吩(BT(和噻吩(TH(的脱除率分别达到95.4%,56.2%和23.4%。基于一级动力学和Arrhenius方程,估算出氧化脱除DBT所需的活化能约为56.8 kJ·mol-1。反应活化能较低,氧化反应较易进行。TEAC/TFA回收利用5次之后活性无明显降低。  相似文献   

6.
通过简单加热并搅拌甲基咪唑盐酸盐和草酸的混合物合成了甲基咪唑盐酸盐/草酸([HMIM]Cl/H2C2O4)型酸性低共熔溶剂,以[HMIM]Cl/H2C2O4为萃取剂和催化剂、H2O2为氧化剂催化氧化法脱除模拟油中的二苯并噻吩,考察不同的脱硫体系、反应温度、催化剂加入量、氧硫比、模拟油中含硫化合物类型对脱硫率的影响。实验表明,在反应温度为40℃、模拟油量为5 ml、[HMIM]Cl/H2C2O4加入量为1.25 ml、O/S 12、反应时间为140 min的最佳反应条件下二苯并噻吩的脱除率可以达到92.2%。动力学分析表明,该氧化脱硫体系符合一级反应动力学方程。循环使用7次后催化剂的活性没有明显降低。  相似文献   

7.
以自制的SBA-15为载体,磷钨酸为活性组分,用过量浸渍法制备了HPW/SBA-15催化剂,并采用SEM、BET和TG-DTA对催化剂进行表征分析。H2O2为氧化剂,十六烷基三甲基溴化铵(CTAB)为相转移剂,以二苯并噻吩(DBT)的模型化合物(DBT为溶质、正辛烷为溶剂)进行氧化脱除为探针反应,考察了磷钨酸负载量和HPW/SBA-15的焙烧温度对催化剂活性的影响,同时考察了氧化-萃取工艺条件对真实柴油脱硫效果的影响。实验结果表明,磷钨酸最佳负载量为30%,HPW/SBA-15在250℃焙烧处理时活性最高;在n(H2O2):n(S)=6、HPW/SBA-15用量为2.5%(基于柴油质量)、CTAB用量为0.4%(基于柴油质量)、萃取级数为4、温度60℃反应1.5h的条件下,柴油硫含量从1317mg/L降到39mg/L,脱硫率达到97.0%、收率不低于85.0%。气相色谱结果显示,该催化氧化脱硫体系容易脱除柴油中加氢难以脱除的二苯并噻吩及其衍生物。  相似文献   

8.
利用微型固定床反应装置对工业Fe-Mo预加氢脱硫催化剂进行加氢脱硫(HDS)评价,研究焦炉煤气中不同常量含碳原料组分(CH4、C2H4、C2H6、CO、CO2)对催化剂加氢活性、选择性以及积炭的影响,并采用红外碳硫分析仪、N2吸附-脱附、Raman以及TPRS-MS对催化剂进行表征。结果表明:在N2气氛下,COS、CS2和C4H4S加氢转化由易到难顺序为:COS>CS2>C4H4S,但COS加氢转化受含碳气氛影响最明显,致使焦炉煤气加氢脱硫中COS难以完全脱除;不同气氛对硫化物加氢选择性都会产生影响,其中C2H4气氛对选择性影响最明显,而对H2S收率影响最明显的是CO2和CO;不同含碳...  相似文献   

9.
夏鸣  张卫东  王猛  李俊  臧树良 《化工进展》2016,35(10):3207-3211
以过氧化氢为氧化剂,[Omim]PF6离子液体为萃取剂,[C16mim]2 Mo2O11为催化剂建立了萃取催化氧化脱硫体系(ECODS)。该反应体系在非常温和的条件下可使DBT的脱除率最高达到99.4%,大大优于单纯的萃取脱硫和萃取氧化脱硫体系。不同硫化物在该体系下的脱硫效果为:DBT >BT >TH。催化体系循环使用10次后催化反应活性未见明显下降。将此催化体系直接用于市售的汽油和柴油,可使其中硫含量降低至12.70mg/L和11.62mg/L。  相似文献   

10.
甘宪福 《粘接》2024,(3):38-40
为了分析影响耐高温聚酰亚胺类胶粘剂性能的因素,使用C12H12N2O和C27H26N2O2作为二胺单体,C17H6O7作为二酐单体,通过封端剂C4H2O3和反应溶剂C5H9NO的共同作用制备了一种聚酰亚胺胶粘剂,测试了不同因素对胶粘剂粘接性能的影响。结果表明,固体质量分数、粘结件表面粗糙度、C12H12N2O和C27H26N2O2单体的摩尔比、二酐与二胺单体的摩尔比、聚酰胺酸固化工艺、亚胺化程度和亚胺化方式都会对耐高温聚酰亚胺类胶粘剂的性能产生影响。当胶粘剂固体质量分数为30%、表面粗糙度的打磨砂纸型号为600...  相似文献   

11.
This work investigates performances of supported transition-metal oxide catalysts for the catalytic reduction of SO2 with C2H4 as a reducing agent. Experimental results indicate that the active species, the support, the feed ratio of C2H4/SO2, and pretreatment are all important factors affecting catalyst activity. Fe2O3/γ-Al2O3 was found to be the most active catalyst among six γ-Al2O3-supported metal oxide catalysts tested. With Fe2O3 as the active species, of the supports tested, CeO2 is the most suitable one. Using this Fe2O3/CeO2 catalyst, we found that the optimal Fe content is 10 wt.%, the optimal feed ratio of C2H4/SO2 is 1:1, and the catalyst presulfidized by H2+H2S exhibits a higher performance than those pretreated with H2 or He. Although the feed concentrations of C2H4:SO2 being 3000:3000 ppm provide a higher conversion of SO2, the sulfur yield decreases drastically at temperatures above 300 °C. With higher feed concentrations, maximum yield appears at higher temperatures. The C2H4 temperature-programmed desorption (C2H4-TPD) and SO2-TPD desorption patterns illustrate that Fe2O3/CeO2 can adsorb and desorb C2H4 and SO2 more easily than can Fe2O3/γ-Al2O3. Moreover, the SO2-TPD patterns further show that Fe2O3/γ-Al2O3 is more seriously inhibited by SO2. These findings may properly explain why Fe2O3/CeO2 has a higher activity for the reduction of SO2.  相似文献   

12.
以L-苏氨酸和香兰素为起始原料,设计并合成了9种新型光催化材料C24H28K2N2O10Sn、C24H28FeK2N2O10、C24H36FeK2N4O10、C24H28Cl2K2N2NiO10、C24H28K2N4NiO16、C24H28K2N2O10Zn、C28H34K2N2NiO14、C24H28CoK2N2O10和C24H28BaK2N2O10,通过IR、MS(EI)、荧光分析和元素分析等对形成的希夫碱及其金属衍生物进行表征,推断其可能的化学结构,用紫外漫吸收研究光催化性质, 预测是一类潜在的环保性光催化材料。  相似文献   

13.
The influences of calcination temperatures and additives for 10 wt.% Cu/γ-Al2O3 catalysts on the surface properties and reactivity for NO reduction by C3H6 in the presence of excess oxygen were investigated. The results of XRD and XPS show that the 10 wt.% Cu/γ-Al2O3 catalysts calcined below 973 K possess highly dispersed surface and bulk CuO phases. The 10 wt.% Cu/γ-Al2O3 and 10 wt.% Mn–10 wt.% Cu/γ-Al2O3 catalysts calcined at 1073 K possess a CuAl2O4 phase with a spinel-type structure. In addition, the 10 wt.% La–10 wt.% Cu/γ-Al2O3 catalyst calcined at 1073 K possesses a bulk CuO phase. The result of NO reduction by C3H6 shows that the CuAl2O4 is a more active phase than the highly dispersed and bulk CuO phase. However, the 10 wt.% Mn–10 wt.% Cu/γ-Al2O3 catalyst calcined at 1073 K possesses significantly lower reactivity for NO reduction than the 10 wt.% Cu/γ-Al2O3 catalyst calcined at 1073 K, although these catalysts possess the same CuAl2O4 phase. The low reactivity for NO reduction for 10 wt.% Mn–10 wt.% Cu/γ-Al2O3 catalyst calcined at 1073 K is attributed to the formation of less active CuAl2O4 phase with high aggregation and preferential promotion of C3H6 combustion to COx by MnO2. The engine dynamometer test for NO reduction shows that the C3H6 is a more effective reducing agent for NO reduction than the C2H5OH. The maximum reactivity for NO reduction by C3H6 is reached when the NO/C3H6 ratio is one.  相似文献   

14.
SAPO-34 molecular sieve was successfully synthesized using diethylamine (DEA) as a template. The influence of template concentration and silica concentration on the synthesis were investigated. Pure SAPO-34 could be obtained when n(DEA)/n(Al2O3)  1.5 and n(SiO2)/n(Al2O3) > 0.1 in the synthesis gel. Further increase of DEA concentration in the starting gel [n(DEA)/n(Al2O3) > 3] has a negative effect on both crystallinity and crystal yield. The products were characterized by XRD, XRF, SEM, NMR, FT-IR, TG-DTA and nitrogen adsorption techniques. It was found that SAPO-34 synthesized with DEA as a template has the characteristic of high silicon incorporation and exhibits good thermal and hydrothermal stability. The catalytic performance of SAPO-34 was tested by methanol-to-olefin (MTO) reaction and high olefins (C2H4 + C3H6) selectivity was obtained.  相似文献   

15.
This study presents morphological and structural variations of K-Feldspar mineral after acid treatment. Both organic and inorganic acids such as C2H2O4, HCl, HNO3 and H2SO4 were employed for this purpose. Another aim of this study was to find an optimum experimental condition for iron (Fe) removal with a minimum damage on the structure of K-Feldspar in which high whiteness index is obtained. The effect of different parameters such as concentration, pH and temperature on the final structure of this mineral was investigated. To find out the chemical composition of powder, XRF was utilized. FTIR, XRD and SEM were employed to study the structure of mineral. Spectrophotometry was chosen to analyze whiteness index of powder after acid treatment. It was found that O—Al—O bond at 647 cm-1 for H2SO4 and HNO3 treated sample disappeared. However, HCl and C2H2O4 were ineffective at this band. In addition, the results revealed an increase in K-Feldspar content, a decrease in Fe content, an increase in whiteness index and no significant structural change for C2H2O4 leached sample. Whiteness index of 91% was obtained for C2H2O4 leached sample with the pH of 2.5 to 3 at temperature of 50℃ and during 1 h.  相似文献   

16.
Direct separation of high purity ethylene (C2H4) from an ethane (C2H6)/ethylene mixture is a critical and challenging task owing to the very similar molecular size and physical properties of the two components. While some studies have attempted this separation, there is a lack of excellent porous materials with strong binding affinity for C2H6-selective adsorption via an energy-efficient adsorptive separation process. Herein, we report a titanium metal-organic framework with strong binding affinity and excellent stability for the highly efficient removal of C2H6 from C2H6/C2H4 mixtures. Single component adsorption isotherms demonstrated a larger amount of adsorbed ethane (1.16 mmol·g-1 under 1 kPa) and high C2H6/C2H4 selectivity (2.7) for equimolar C2H6/C2H4 mixtures, especially in the low-pressure range, which is further confirmed by the results of grand canonical Monte Carlo simulations for C2H6 adsorption in this framework. The experimental breakthrough curves showed that C2H4 with a high purity was collected directly from both 1:9 and 1:15 C2H6/C2H4 (volume ratio) mixtures at 298 K and 100 kPa. Moreover, the unchanged adsorption and separation performance after cycling experiments confirmed the promising applicability of this material in future.  相似文献   

17.
With the increasing demand for synthetic rubber, the purification of 1,3-butadiene (C4H6) is of great industrial significance. Herein, the successful removal of n-butene (n-C4H8) and iso-butene (iso-C4H8) from 1,3-butadiene (C4H6) was realized by synthesizing a novel TaOF52- anion-pillared ultramicroporous material TaOFFIVE-3-Ni (also referred to as ZU-96, TaOFFIVE=TaOF52-, 3=pyrazine). Single-component adsorption isotherms show that TaOFFIVE-3-Ni can achieve the exclusion of n-C4H8 and iso-C4H8 in the low pressure region (0-30 kPa), and uptake C4H6 with a high capacity of 92.78 cm3·cm-3 (298 K and 100 kPa). The uptake ratio of C4H6/iso-C4H8 on TaOFFIVE-3-Ni was 20.83 (298 K and 100 kPa), which was the highest among the state-of-the-art adsorbents reported so far. With the rotation of anion and pyrazine ring, the pore size changes continuously, which makes smaller-size C4H6 enter the channel while larger-size n-C4H8 and iso-C4H8 are completely blocked. The excellent breakthrough performance of TaOFFIVE-3-Ni shows great potential in industrial separation of C4 olefins. The specific adsorption binding sites within ZU-96 was further revealed through the modeling calculation.  相似文献   

18.
Nanoparticles of CexZr1−xO2 (x = 0.75, 0.62) were prepared by the oxidation-coprecipitation method using H2O2 as an oxidant, and characterized by N2 adsorption, XRD and H2-TPR. CexZr1−xO2 prepared had single fluorite cubic structure, good thermal stability and reduction property. With the increasing of Ce/Zr ratio, the surface area of CexZr1−xO2 increased, but thermal stability of CexZr1−xO2 decreased. The surface area of Ce0.62Zr0.38O2 was 41.2 m2/g after calcination in air at 900 °C for 6 h. TPR results showed the formation of solid solution promoted the reduction of CeO2, and the reduction properties of CexZr1−xO2 were enhanced by the cycle of TPR-reoxidation. The Pd-only three-way catalysts (TWC) were prepared by the impregnation method, in which Ce0.75Zr0.25O2 was used as the active washcoat and Pd loading was 0.7 g/L. In the test of Air/Fuel, the conversion of C3H8 was close to 100% and NO was completely converted at λ < 1.025. The high conversion of C3H8 was induced by the steam reform and dissociation adsorption reaction of C3H8. Pd-only catalyst using Ce0.75Zr0.25O2 as active washcoat showed high light off activity, the reaction temperatures (T50) of 50% conversion of CO, C3H8 and NO were 180, 200 and 205 °C, respectively. However, the conversions of C3H8 and NO showed oscillation with continuously increasing the reaction temperature. The presence of La2O3 in washcoat decreased the light off activity and suppressed the oscillation of C3H8 and NO conversion. After being aged at 900 °C for 4 h, the operation windows of catalysts shifted slightly to rich burn. The presence of La2O3 in active washcoat can enhance the thermal stability of catalyst significantly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号