首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
以二维硬碟流体为参考,借助现代分子热力学研究方法建立了一个二维变阱宽方阱链流体的分子热力学模型(SWCF-VR-2D),并将建立的模型用于气体在固体界面吸附的关联计算中,获得了相应吸附质和吸附剂的模型参数。发现模型能满意再现氮气、甲烷、乙烷、乙烯等气体在硅胶、活性炭、沸石、金属有机骨架(MOF)等不同固体界面上的吸附等温线,总的平均绝对偏差为3.42%,其中能量参数εw反映了吸附剂与吸附质之间的相互作用大小。  相似文献   

2.
结合流体混合规则,将之前建立的二维变阱宽方阱链流体分子热力学模型(SWCF-VR-2D)扩展至混合流体,并利用模型计算了甲烷/二氧化碳、甲烷/氮气和甲烷/乙烷等气体混合物在不同吸附剂上的吸附等温线。由于混合气体间的相互作用会使得混合气体的吸附不同于单一气体的吸附,通过调节气体与固体壁面间的相互作用参数εw以描述这种变化。调节能量参数后模型能满意计算混合气体的吸附等温线,总的平均偏差为5.06%。  相似文献   

3.
具有复杂结构的纳微界面往往是界面复杂作用和宏观实验现象的主导因素。要准确描述界面处复杂流体的行为,需要引入能描述复杂流体-固体界面相互作用的分子热力学模型。本综述围绕分子热力学模型化方法拓展至纳微界面传递问题,提出“分子热力学建模+分子模拟+纳微实验”三者有机配合新思路。并针对复杂流体-固体界面相互作用的定量研究,着重综述了作者在热力学建模,分子模拟以及采用原子力显微镜 (atomic force microscopy,AFM) 实验方面的研究进展,创新性地提出将AFM定量化分析作为桥梁,用于构建分子模拟模型,描述复杂界面作用,揭示分子热力学机制,为构建纳微界面传递模型以及分子热力学模型由体相拓展至界面提供了可能。  相似文献   

4.
链状流体的分子热力学模型(Ⅰ)──纯物质   总被引:1,自引:1,他引:0       下载免费PDF全文
刘洪来  叶汝强 《化工学报》1996,47(6):663-673
实际链状流体的分子热力学模型表示为参考流体(硬球链流体)的贡献与一微扰项之和.作者先前建立的硬球链流体的状态方程用于计算参考流体的性质,用Alder等人对方阱流体的计算机模拟结果计算微扰项的贡献,从而建立了实际链状纯流体的分子热力学模型.该模型具有非常简单的形式,用三个与温度无关的分子参数(分子的链数,链节的直径和链节间的方阱位能阱深)可以较好地关联从球形小分子到链状高分子、分子间没有氢键作用的流体的饱和蒸汽压、饱和液体体积和pVT关系  相似文献   

5.
实际链状流体的分子热力学模型表示为参考流体(硬球链流体)的贡献与一微扰项之和.作者先前建立的硬球链流体的状态方程用于计算参考流体的性质,用Alder等人对方阱流体的计算机模拟结果计算微扰项的贡献,从而建立了实际链状纯流体的分子热力学模型.该模型具有非常简单的形式,用三个与温度无关的分子参数(分子的链数,链节的直径和链节间的方阱位能阱深)可以较好地关联从球形小分子到链状高分子、分子间没有氢键作用的流体的饱和蒸汽压、饱和液体体积和pVT关系  相似文献   

6.
具有复杂结构的纳微界面往往是界面复杂作用和宏观实验现象的主导因素。要准确描述界面处复杂流体的行为,需要引入能描述复杂流体-固体界面相互作用的分子热力学模型。本综述围绕分子热力学模型化方法拓展至纳微界面传递问题,提出"分子热力学建模+分子模拟+纳微实验"三者有机配合新思路。并针对复杂流体-固体界面相互作用的定量研究,着重综述了作者在热力学建模,分子模拟以及采用原子力显微镜(atomic force microscopy,AFM)实验方面的研究进展,创新性地提出将AFM定量化分析作为桥梁,用于构建分子模拟模型,描述复杂界面作用,揭示分子热力学机制,为构建纳微界面传递模型以及分子热力学模型由体相拓展至界面提供了可能。  相似文献   

7.
纳米受限界面处的流体由于受到界面性质的影响显著,且存在复杂的传递和反应机制耦合问题,其流体分子行为难以调控,成为了现代化工新技术(如膜过程、多相催化)突破的瓶颈。结合了近几年本课题组的相关工作进展,以化学性质稳定的高比表面氧化钛作为研究平台,对界面处流体分子受限行为进行分析,研究了传递和反应机制分别对界面处流体行为的影响,并探索其调控机制;同时对建立的相应分子热力学模型进行了初步探索,通过原子力显微镜技术将界面摩擦性质和分子间相互作用关联,为分子热力学模型提供分子参数。  相似文献   

8.
章雪莹  马俊  何林  隋红  李鑫钢 《化工进展》2022,41(2):628-636
重质油固体系(如油砂、沥青岩、油页岩、重质油、油泥等)中因油-水-固三相复杂作用,导致分离困难。本文以印尼沥青岩重质油为例,针对重质组分中界面活性最强的界面活性沥青质的结构及其在矿物质表面吸附特性问题进行研究。通过凝胶渗透色谱、红外光谱仪、XPS等对界面活性沥青质的结构进行分析,提出其初步结构。以SiO2为矿物固体模型,在甲苯溶剂环境中,采用QCM-D和AFM研究界面活性沥青质在固体表面的吸附特征,发现该类沥青质分子在SiO2表面的吸附与普通沥青质分子存在较大差异,呈现多层吸附特征,符合Freundlich吸附模型。吸附膜存在较多高分散性团聚体,黏弹性较大,易于形成具有三维结构的强机械性界面膜。该结构和界面吸附特性可为揭示其在油水乳液稳定过程中的机理提供有利基础。  相似文献   

9.
纳米受限界面处的流体由于受到界面性质的影响显著,且存在复杂的传递和反应机制耦合问题,其流体分子行为难以调控,成为了现代化工新技术(如膜过程、多相催化)突破的瓶颈。结合了近几年本课题组的相关工作进展,以化学性质稳定的高比表面氧化钛作为研究平台,对界面处流体分子受限行为进行分析,研究了传递和反应机制分别对界面处流体行为的影响,并探索其调控机制;同时对建立的相应分子热力学模型进行了初步探索,通过原子力显微镜技术将界面摩擦性质和分子间相互作用关联,为分子热力学模型提供分子参数。  相似文献   

10.
热力学模型是研究流体相行为和热力学性质的重要工具。理论模型的有效应用离不开模型参数的确定。为赋予热力学模型的预测功能,目前的策略一是建立基团贡献(GC)状态方程(EOS),二是探索热力学模型参数的理论预测方法。围绕先前开发的变阱宽方阱链流体状态方程(SWCF-VR),采用基团贡献法思路获得了不同基团对模型参数的贡献值,建立了GC-SWCF方程,证实GC-SWCF方程能满意预测纯物质的密度。进一步将似导体屏蔽模型(COSMO)与SWCF结合,基于COSMO方法获得了192种有机化合物的SWCF方程的模型参数,这是一种不依赖实验数据确定模型参数的理论方法。发现COSMO+SWCF能较好地预测纯物质的密度。引入一个与温度无关的二元交互作用可调参数后,GC-SWCF与COSMO+SWCF都可应用于二元混合物密度与气液相平衡的计算中。  相似文献   

11.
A theoretical study, based on statistical thermodynamics, of the adsorbed solution behaviour of binary gas monolayers on a homogeneous solid surface is presented. The adsorbate—solid interactions are modelled via the summed 10-4 potential and the adsorbate—adsorbate interactions as those of a two-dimensional fluid mixture in which the molecules interact via Lennard-Jones 12-6 potentials. The thermodynamic properties of the two-dimensional mixture are obtained from the van der Waals one-fluid model. We present results from Monte Carlo computer simulations of two-dimensional fluid mixtures which support the accuracy of this procedure. The model can be used to study the relative importance of adsorbate—solid and adsorbate—adsorbate interactions in determining the adsorbed solution behaviour.Comparisons with experimental adsorption equilibria data for ethane—propane mixtures adsorbed on graphitized carbon black show that the theory gives excellent predictions of the adsorption equilibria, without adjustable parameters. For this system at 298 K and 700 Torr the adsorption selectivity is dominated by the difference in the Henry's law constants. However, it is shown that the adsorbate—adsorbate interactions and nonideal adsorbed solution behaviour become more or less important depending on the conditions in relation to the two-dimensional phase diagram.  相似文献   

12.
This work presents a comprehensive thermodynamic model for both pure component isotherms and mixed-gas adsorption equilibria. A generalization of thermodynamic Langmuir isotherm, the proposed model assumes competitive adsorption of multiple adsorbates on adsorbent surface for mixed-gas adsorption equilibria, and it applies an area-based adsorption nonrandom two-liquid activity coefficient model in the activity coefficient calculations for the adsorbate phase. The resulting generalized Langmuir isotherm properly captures both surface loading dependence and adsorbate phase composition dependence for mixed-gas adsorption equilibria. The model is validated with accurate representations of gas adsorption equilibrium data for varieties of unary, binary, and ternary gas systems. The model results are further compared with those calculated from extended Langmuir isotherm and Ideal Adsorbed Solution Theory.  相似文献   

13.
A simplified thermodynamic analysis of adsorption processes in temperature swing adsorption (TSA) and pressure swing adsorption (PSA) modes as a function of adsorbate concentration and the adsorbent–adsorbate interaction strength is presented in this article. The thermodynamic separation efficiency of a TSA process is optimal at dilute feed conditions, and becomes more thermodynamically efficient with increasing adsorbate affinity even though the energy of separation increases. The adsorption process is spontaneous, and for a strong isotherm, the energy required to reverse the adsorption is nearly independent of the adsorbate concentration as adsorbate loading in nearly‐saturated materials is essentially constant with feed concentration. PSA units are efficient thermodynamically and the efficiency increases with the concentration of the desired adsorbate. This thermodynamic treatment has implications for separation processes that address carbon emissions. TSA systems operate more efficiently (thermodynamically) in the “air capture” case because they apply work to the concentrated product rather than the dilute feed. © 2016 American Institute of Chemical Engineers AIChE J, 62: 3699–3705, 2016  相似文献   

14.
Drinking water with higher fluoride levels results in serious irremediable health problems that have attained a startle all over the world.Researches focused towards deflouridation through the application of biosorbents prepared from various plants are finding greater scope and significance.Present research is done on Cocos nucifera Linn.(coconut tree) one of the very commonly available plants throughout Kerala and around the globe.An adsorbent developed from the root portion of C.nucifera Linn.is used in the present study.Equilibrium study revealed that the fluoride uptake capacity is quite significant and linearly increases with initial adsorbate concentration.The adsorption data is analyzed for Langmuir, Freundlich, Temkin, and Dubinin–Radushkevich isotherm models at varying initial adsorbate concentrations(2–25 mg·L~(-1)).It is found that the adsorption of fluoride onto C.nucifera Linn.root adsorbent follows Langmuir isotherm.Langmuir isotherm constants "a" and "b" obtained are 2.037 mg·g~(-1) and 0.823 L·mg~(-1) at an adsorbent dose of 8 g·L~(-1) and temperature(26 ± 1) ℃.The mean free sorption energy, E obtained, is 9.13 kJ ·mol~(-1) which points out that the adsorption of fluoride onto C.nucifera Linn.root adsorbent is by chemisorption mechanism.The kinetic study also supports chemisorption with adsorption data fitting well with a pseudo-second-order kinetic model with an estimated rate constant K_2 of 0.2935 g·mg~(-1) min at an equilibrium contact time of 90 min.The thermodynamic study indicated the spontaneous and endothermic nature(ΔH =12.728 kJ·mol~(-1)) of fluoride adsorption onto the C.nucifera Linn.root adsorbent.Scanning Electron Microscopy(SEM), BET, FTIR, and EDX methods were used to analyze the surface morphology of adsorbent before and after fluoride adsorption process.Experiments on deflouridation using C.nucifera Linn.root adsorbent application on fluoride contaminated ground water samples from fields showed encouraging results.  相似文献   

15.
Developed for multilayer adsorption, the Brunauer–Emmett–Teller ( BET) isotherm considers the adsorption of the first layer as an equilibrium chemical reaction between adsorbate molecules and adsorption sites and the adsorption of the second and subsequent layers as a condensation–evaporation process. Following the recent development of an activity-based formulation for the Langmuir isotherm for monolayer adsorption, we present an activity-based formulation for the BET isotherm in which species concentrations are replaced with species activities. Capturing the adsorbent surface heterogeneity for the adsorption of the first layer, the resulting thermodynamic BET isotherm is shown to accurately represent pure component adsorption isotherms over the relative pressure range of zero to unity or prior to the onset of capillary condensation. The thermodynamic BET isotherm should facilitate accurate estimation of monolayer adsorption capacity and the corresponding adsorbent surface area.  相似文献   

16.
《Carbon》2004,42(12-13):2409-2421
The purpose of this study is to suggest an efficient process, which does not require a big investment for the removal of pyridine from wastewater. Activated carbons developed from agricultural waste materials were characterized and utilized for the removal of pyridine from wastewater. Systematic studies on pyridine adsorption equilibrium and kinetics by low cost activated carbons were carried out. Adsorption studies were carried out at different temperatures, particle size, pH and adsorbent doses. Both Langmuir and Freundlich models fitted the adsorption data quite reasonably. The results indicate that the Langmuir adsorption isotherm model fits the data better as compared to the Freundlich adsorption isotherm model. Various mechanisms were established for pyridine adsorption on developed adsorbents. Further, the data are better correlated with non-linear form as compared to the linear one. The kinetic studies were conducted to delineate the effect of temperature, initial adsorbate concentration, particle size of the adsorbent and solid to liquid ratio. The adsorption of pyridine follows the first order rate kinetics. On the basis of these studies, various parameters such as effective diffusion coefficient, activation energy and entropy of activation were evaluated to establish the mechanisms. It is concluded that the adsorption occurs through a particle diffusion mechanism at temperatures 10 and 25 °C while at 40 °C it occurs through film diffusion mechanism. Similarly at concentrations 25 and 50 mg/l the adsorption is particle diffusion controlled while at⩽50 mg/l it is film diffusion controlled.  相似文献   

17.
The kinetics of single component adsorption on activated carbon is investigated here using a heterogeneous vacancy solution theory (VST) of adsorption. The adsorption isotherm is developed to account for the adsorbate non-ideality due to the size difference between the adsorbate molecule and the vacant site, while incorporating adsorbent heterogeneity through a pore-width-related potential energy. The transport process in the bidisperse carbon considers coupled mass transfer in both macropore and micropore phases simultaneously. Adsorbate diffusion in the micropore network is modeled through effective medium theory, thus considering pore network connectivity in the adsorbent, with the activation energy for adsorbate diffusion related to the adsorption energy, represented by the Steele 10-4-3 potential for carbons. Experimental data of five hydrocarbons, CO2 and SO2 on Ajax carbon at multiple temperatures, as well as three hydrocarbons on Norit carbon at three temperatures are first fitted by the heterogeneous VST model to obtain the isotherm parameters, followed by application of the kinetic model to uptake data on carbon particles of different sizes and geometry at various temperatures. For the hydrocarbons studied, the model can successfully correlate the experimental data for both adsorption equilibrium and kinetics. However, there is some deviation in the fit of the desorption kinetics for polar compounds such as CO2 and SO2, due to the inadequacy of the L-J potential model in this case. The significance of viscous transport in the micropores is also considered here and found to be negligible, consistent with recent molecular simulation studies.  相似文献   

18.
Abstract

The aim of this work was to study the bleaching of oil extracted from the heads of the catfish by thermomechanical process through equilibrium, kinetics, and thermodynamics adsorption studies. The condition for the bleaching step was with 1% (w/w) adsorbent composed of 95% activated earth and 5% activated carbon (w/w). The pseudo-first order and pseudo-second order models were the most appropriate to represent the adsorption kinetics. The temperature of 80?°C increased the adsorption capacity of the two adsorbates, and the activation energies values were of 47.47 and 44.82?kJ mol?1, respectively, for the adsorption of carotenoids and peroxides. The Langmuir model was the most appropriate to describe the bleaching equilibrium curves. The thermodynamic parameters revealed that the processes were endothermic, favorable, and spontaneous and the interaction between adsorbent and adsorbate was physical.  相似文献   

19.
Vladimir Kh. Dobruskin 《Carbon》2002,40(7):1003-1010
A method for calculating micropore size distributions based on a molecular model of adsorption and analytical solution for the adsorption isotherm is presented in this study. Micropore volume filling is considered to be an evolution of two-dimensional condensation, which occurs on micropore walls at the critical condensation pressure. The treatment of adsorption isotherms of propane, propylene, acetylene, ethylene, cyclopentane and benzene shows that the method offers a quantitative approach to determining a reliable carbon texture, which is independent of adsorbate employed and adsorption temperature. The invariant parameters of porous structure coupled with molecular constants of adsorbate provide a prediction of the adsorption equilibrium in a wide range of pressures. Good agreement between experimental and calculated data is demonstrated for adsorption of both gases and vapors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号