共查询到16条相似文献,搜索用时 46 毫秒
1.
针对自适应混合高斯背景模型执行速度慢、检测前景时容易产生“鬼影”等问题,提出一种改进的混合高斯背景建模方法。该方法通过对高斯分布权值和生存时间的限制,建立高斯分布退出机制,使模型能根据场景自适应选择每个像素的高斯分布个数,从而去除多余高斯分布,加快算法执行速度。在模型更新过程中,通过融入帧间差分,将每帧图像分成运动像素、背景像素及非真实运动像素,并通过对非真实运动像素赋予较大学习率来加速移出背景的恢复,从而避免“鬼影”和拖影现象。实验结果表明,与传统检测方法相比,该方法可以获得更好的目标检测效果。 相似文献
2.
提出了运动目标检测中背景动态建模的一种方法。该方法是在Stauffer等人提出的自适应混合高斯背景模型基础上,为每个像素构建混合高斯背景模型,通过融入帧间差分把每帧中的图像区分为背景区域、背景显露区域和运动物体区域。相对于背景区域,背景显露区中的像素点将以大的更新率更新背景模型,使得长时间停滞物体由背景变成运动前景时,被遮挡的背景显露区被快速恢复。与Stauffer等人提出的方法不同的是,物体运动区不再构建新的高斯分布加入到混合高斯分布模型中,减弱了慢速运动物体对背景的影响。实验结果表明,在有诸多不确定性因素的序列视频中构建的背景有较好的自适应性,能迅速响应实际场景的变化。 相似文献
3.
混合高斯模型和差分法相融合的运动目标检测 总被引:1,自引:0,他引:1
提出运动目标检测中背景动态建模和OTSU局部递归分割的一种方法,该方法在自适应混合高斯背景模型基础上,为每个像素构建混合高斯背景模型,通过帧间差分把每帧中的图像区分为背景区域和运动区域,背景区域中像素点将以特定的更新率更新背景模型,物体运动区不再构建新的高斯分布加入到混合高斯分布模型中.实验结果表明,在有诸多不确定性因素的序列视频中构建的背景有较好的自适应性,能迅速响应实际场景的变化. 相似文献
4.
针对智能交通系统中运动目标检测阶段存在的不足,提出了一种基于自适应混合高斯模型(GMM)的改进算法。将隔帧差分的方法引入背景建模的初始判别阶段,从而迅速地检测出运动变化区域,提高了算法的灵敏度,同时也增强了对缓慢运行车辆的检测的适用性;将划分出的背景及运动区域赋予不同的更新率,使得背景显露区域得到迅速恢复,消去了运动车辆留下的"影子"。在此较为精确的背景模型下,结合灰度和canny边缘特征进行背景差分,有效地保留了与背景灰度相似的运动目标的轮廓。通过实验证明该检测算法取得了较好的效果。 相似文献
5.
《计算机应用与软件》2015,(10)
针对传统的混合高斯背景建模算法实时性差及对光照等引起的环境突变适应性差的问题,提出一种改进算法。通过定义模型生存时间、连续匹配次数等参数定量约束模型的生存时间,改进传统算法中固定模型数量的限制,提高背景建模速度;通过定义突变因子、突变持续时间,检测光照突变。仿真实验表明,改进算法实现了模型数量的自适应增减,提高了建模效率,对由传统建模算法实时性差造成的误检及光照突变引起的误检能较好的解决,具有较强的鲁棒性。 相似文献
6.
传统混合高斯背景模型(Gaussian mixture model, GMM)不能快速适应动态场景中背景发生突变的情况. 本文提出一种基于元认知模型的智能混合高斯背景建模方法, 每个输入像素经过元认知监控成分刺激元认知体验成分以提取成功(或失败)的意识进行认知, 根据提取的意识及时向元认知知识成分传输新的认知知识或直接提取元认知知识成分, 并作出决策信息. 该方法能够对背景模型产生认知, 当背景突变为认知过的背景时, 可以快速适应并能更准确地描述复杂场景中的真实背景. 相似文献
7.
基于帧差分块的混合高斯背景模型 总被引:1,自引:0,他引:1
针对混合高斯背景模型计算量过大、对复杂场景的适应能力较差等问题,提出了一种基于帧差分块和自适应学习率的混合高斯背景模型改进算法。引入分块模型思想,有效结合了像素的空域信息;根据帧间差分结果,判断可疑前景区域和背景区域,提高了检测灵敏度;针对前景可疑区域采用复杂模型,保证运动目标检测的精度,反之采用简单模型降低计算量;通过自适应学习率,加速背景的形成与消退。实验结果证明该算法较好地兼顾了检测精度和计算代价。 相似文献
8.
9.
10.
混合高斯模型已经广泛应用于背景建模中,但是结果受到噪音的干扰和光照突变的影响。为了解决这个问题,将Stauffer的混合高斯模型进行改进,当帧间差分判断出场景变化时,每个像素点的学习率会随着变化。由于边缘图像受到噪音干扰小,将这种改进的混合高斯模型也应用在边缘图像中,来提取边缘前景。边缘前景膨胀后,通过原图像的前景和边缘前景的与运算,得到最后的结果。实验结果表明,可以很好地去除噪音和解决光照突变的影响,提高了目标检测的效果,比传统方法更加有效。 相似文献
11.
基于高斯混合模型的多车道车流量检测算法 总被引:3,自引:0,他引:3
研究视频的城市交通路口车流量检测准确率的问题,由于车速过慢,有效性差.针对目前的车流量检测算法仅限于单车道车流量检测及准确率低的问题,提出了基于高斯混合模型的多车道车流量检测算法,在交通路口的视频中设定所要检测多个车道的检测带并根据车道线划分车道,运用高斯混合模型对检测带进行背景建模,结合背景差法提取运动车辆,通过垂直投影方法解决车辆断层引起误检的问题,对车身宽度与阈值的比较判断车辆是否通过检测带,实现了多车道车流量检测.实验证明,多车道算法能有效克服断层引起误检的问题,检测车辆准确率高,实时性好,鲁棒性高,为智能交通灯控制提供准确参数. 相似文献
12.
本文提出一种基于混合高斯模型和改进了的平均背景减除法来进行运动目标检测的算法。首先,运用混合高斯建立背景模型,然后结合改进的平均背景减除法来确定运动目标。实验结果表明,该算法准确性高,稳定性好,能满足实时监控的需要。 相似文献
13.
14.
15.
16.
运动目标检测是实现目标跟踪和行为分析等任务的基础。在运动目标检测中,消除背景与噪声的干扰,从而将运动目标从图像中分离出来一直是研究的重点。混合高斯模型法被广泛地应用于运动目标检测,对存在小幅度运动的背景有较好的抗干扰能力,并且能提取出较完整的运动目标,但是同时存在噪声干扰,且对阴影抑制效果较差。针对传统混合高斯模型法的不足,提出一种改进的基于混合高斯模型的运动目标检测算法,利用帧差法对光照突变适应性较好和算法简单的特点,将传统混合高斯模型法与和四帧差法结合。实验结果表明,该方法能够有效地消除复杂环境中的噪声,并对阴影有一定的抑制作用,提高了运动目标检测的准确性和完整性。 相似文献