首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Regulation of protein synthesis by eukaryotic initiation factor-2alpha (eIF-2alpha) phosphorylation is a highly conserved phenomenon in eukaryotes that occurs in response to various stress conditions. Protein kinases capable of phosphorylating eIF-2alpha have been characterized from mammals and yeast. However, the phenomenon of eIF2-alpha-mediated regulation of protein synthesis and the presence of an eIF-2alpha kinase has not been demonstrated in higher plants. We show that plant eIF-2alpha (peIF-2alpha) and mammalian eIF-2alpha (meIF-2alpha) are phosphorylated similarly by both the double-stranded RNA-binding kinase, pPKR, present in plant ribosome salt wash fractions and the meIF-2alpha kinase, PKR. By several criteria, phosphorylation of peIF-2alpha is directly correlated with pPKR protein and autophosphorylation levels. Significantly, pPKR is capable of specifically phosphorylating Ser51 in a synthetic eIF-2alpha peptide, a key characteristic of the eIF-2alpha kinase family. Taken together, these data support the concept that pPKR is a member of the eIF-2alpha kinase family. In addition, the inhibition of brome mosaic virus RNA in vitro translation in wheat germ lysates by the addition of double-stranded RNA, phosphorylated peIF-2alpha, meIF-2alpha, or activated human PKR suggests that plant protein synthesis may be regulated via phosphorylation of eIF-2alpha.  相似文献   

2.
The in vitro phosphorylation of the microtubule-associated protein tau by casein kinase II was studied. Purified human brain tau was phosphorylated by casein kinase II to a stoichiometry of 0.7 mol of 32P/mol of tau. Individual recombinant human tau isoforms were phosphorylated to stoichiometries ranging from 0.2 to 0.8 mol of 32P/mol of tau. Casein kinase II catalyzed a 4-fold greater incorporation of phosphate into the tau isoform containing a 58-amino acid insert near its amino terminus (T4L) than the isoforms without the 58-amino acid insert (T3 and T4). Phosphopeptide mapping of casein kinase II phosphorylated human tau and recombinant tau isoforms suggested that the isoforms containing an amino-terminal insert constitute the major substrates for casein kinase II within the tau family. The sites of phosphorylation on T4L were identified by digesting phosphorylated T4L with the protease Asp-N, separating the peptides by reversed phase high performance liquid chromatography, and analyzing the isolated peptides by liquid-secondary ion mass spectrometry and solid-phase amino-terminal sequencing. Thr39 was identified as the predominant phosphorylation site, which is located 5 residues from the amino-terminal insert in T4L. Phosphopeptide mapping of tau isolated from LA-N-5 neuroblastoma cells indicates that Thr39 is phosphorylated in situ. To our knowledge, this is the first demonstration of a differential phosphorylation of the human tau isoforms, with the isoforms containing the acidic amino-terminal insert being the preferred substrates of casein kinase II.  相似文献   

3.
Several translation initiation factors in mammals and yeast are regulated by phosphorylation. The phosphorylation state of these factors is subject to alteration during development, environmental stress (heat shock, starvation, or heme deprivation), or viral infection. The phosphorylation state and the effect of changes in phosphorylation of the translation initiation factors of higher plants have not been previously investigated. We have determined the isoelectric states for the wheat translation initiation factors eIF-4A, eIF-4B, eIF-4F, eIF-iso4F, and eIF-2 and the poly(A)-binding protein in the seed, during germination, and following heat shock of wheat seedlings using two-dimensional gel electrophoresis and Western analysis. We found that the developmentally induced changes in isoelectric state observed during germination or the stress-induced changes were consistent with changes in phosphorylation. Treatment of the phosphorylated forms of the factors with phosphatases confirmed that the nature of the modification was due to phosphorylation. The isoelectric states of eIF-4B, eIF-4F (eIF-4E, p26), eIF-iso4F (eIF-iso4E, p28), and eIF-2alpha (p42) were altered during germination, suggesting that phosphorylation of these factors is developmentally regulated and correlates with the resumption of protein synthesis that occurs during germination. The phosphorylation of eIF-2beta (p38) or poly(A)-binding protein did not change either during germination or following a thermal stress. Only the phosphorylation state of two factors, eIF-4A and eIF-4B, changed following a heat shock, suggesting that plants may differ significantly from animals in the way in which their translational machinery is modified in response to a thermal stress.  相似文献   

4.
A eukaryotic translation initiation factor 2 (eIF-2)-associated 67 kDa glycoprotein (p67) protects the eIF-2 alpha-subunit from inhibitory phosphorylation by eIF-2 kinases, and this promotes protein synthesis in the presence of active eIF-2 alpha kinases in vitro [Ray, M. K., et al. (1992) Proc. Natl. Acad. Sci. U.S.A. 89, 539-543]. We have now examined the effect of overexpression of this cellular eIF-2 kinase inhibitor in an in vivo system using transiently transfected COS-l cells. In this system, coexpression of genes that inhibit PKR activity restores translation of plasmid-derived mRNA. We now report the following. (1) Transient transfection of COS-1 cells with a p67 expression vector increased p67 synthesis by 20-fold over endogenous levels in the isolated subpopulation of transfected cells. (2) Cotransfection of p67 cDNA increased translation of plasmid-derived mRNAs. (3) Overexpression of p67 reduced phosphorylation of coexpressed eIF-2 alpha. (4) p67 synthesis was inhibited by cotransfection with an eIF-2 alpha mutant S51D, a mutant that mimics phosphorylated eIF-2 alpha, indicating that p67 cannot bypass translational inhibition mediated by phosphorylation of the eIF-2 alpha-subunit. These results show that the cellular protein p67 can reverse PKR-mediated translational inhibition in intact cells.  相似文献   

5.
Phosphorylation by protein kinase C of the "a" and "b" variants of plasma membrane Ca2+ pump isoforms 2 and 3 was studied. Full-length versions of these isoforms were assembled and expressed in COS cells. Whereas the "a" forms were phosphorylated easily with PKC, isoform 2b was phosphorylated only a little, and isoform 3b was not phosphorylated at all. Phosphorylation of isoforms 2a and 3a did not affect their basal activity, but prevented the stimulation of their activity by calmodulin and their binding to calmodulin-Sepharose. This indicated that phosphorylation prevented activation of these isoforms by preventing calmodulin binding. Based on these results, phosphorylation of the pump with PKC would be expected to increase free intracellular Ca2+ levels in those cells where isoforms 2a and 3a are expressed.  相似文献   

6.
7.
8.
To define the coupling mechanism between cardiac load and the rate of protein synthesis, changes in the extent of eIF-4E phosphorylation were measured after imposition of a load. Electrically stimulated contraction of adult feline cardiocytes increased eIF-4E phosphorylation to 34% after 4 h, as compared with 8% phosphorylation in quiescent controls. However, eIF-4E phosphorylation did not increase upon electrical stimulation in the presence of 7.5 mM 2,3-butanedione monoxime, an inhibitor of actin-myosin cross-bridge cycling and active tension development. Treatment of adult cardiocytes with either 0.1 microM insulin or 0.1 microM phorbol 12-myristate 13-acetate increased eIF-4E phosphorylation to 23 and 64%, respectively, but these increases were not blocked by 2,3-butanedione monoxime. In canine models of acute hemodynamic overload in vivo, eIF-4E phosphorylation increased to 23% in response to left ventricular pressure overload as compared with 7% phosphorylation in controls. Acute volume overload had no effect on eIF-4E phosphorylation. These changes in eIF-4E phosphorylation account for differences in anabolic responses to acute pressure versus acute volume overload. These data suggest that eIF-4E phosphorylation is a mechanism by which increased cardiac load is coupled to accelerated rates of protein synthesis.  相似文献   

9.
Phosphorylation of eIF-2 alpha in Saccharomyces cerevisiae by the protein kinase GCN2 leads to inhibition of general translation initiation and a specific increase in translation of GCN4 mRNA. We isolated mutations in the eIF-2 alpha structural gene that do not affect the growth rate of wild-type yeast but which suppress the toxic effects of eIF-2 alpha hyperphosphorylation catalyzed by mutationally activated forms of GCN2. These eIF-2 alpha mutations also impair translational derepression of GCN4 in strains expressing wild-type GCN2 protein. All four mutations alter single amino acids within 40 residues of the phosphorylation site in eIF-2 alpha; however, three alleles do not decrease the level of eIF-2 alpha phosphorylation. We propose that these mutations alter the interaction between eIF-2 and its recycling factor eukaryotic translation initiation factor 2B (eIF-2B) in a way that diminishes the inhibitory effect of phosphorylated eIF-2 on the essential function of eIF-2B in translation initiation. These mutations may identify a region in eIF-2 alpha that participates directly in a physical interaction with the GCN3 subunit of eIF-2B.  相似文献   

10.
11.
The Saccharomyces cerevisiae ubiquitin-conjugating enzymes (E2s) UBC4 and UBC5 are essential for degradation of short-lived and abnormal proteins. We previously identified rat cDNAs encoding two E2s with strong sequence similarity to UBC4 and UBC5. These E2 isoforms are widely expressed in rat tissues, consistent with a fundamental cellular function for these E2s. We now report a new isoform, 8A, which despite having >91% amino acid identity with the other isoforms, shows several novel features. Expression of the 8A isoform appears restricted to the testis, is absent in early life, but is induced during puberty. Hypophysectomy reduced expression of the 8A isoform. In situ hybridization studies indicated that 8A mRNA is expressed mainly in round spermatids. Immunoblot analyses showed that 8A protein is found not only in subfractions of germ cells enriched in round spermatids but also in subfractions containing residual bodies extruded from more mature elongated spermatids, indicating that the protein possesses a longer half-life than the mRNA. Unlike all previously identified mammalian and plant homologs of S. cerevisiae UBC4, which possess a basic pI, the 8A isoform is unique in possessing an acidic pI. The small differences in sequence between the 8A isoform and other rat isoforms conferred differences in biochemical function. The 8A isoform was less effective than an isoform with a basic pI or ineffective in conjugating ubiquitin to certain fractions of testis proteins. Thus, although multiple isoforms of a specific E2 may exist to ensure performance of a critical cellular function, our data demonstrate, for the first time, that multiple genes also permit highly specialized regulation of expression of specific isoforms and that subtle differences in E2 primary structure can dictate conjugation of ubiquitin to different subsets of cellular proteins.  相似文献   

12.
Alternative initiation of translation at three CUG and one AUG start codons leads to the synthesis of four isoforms of fibroblast growth factor 2 (FGF-2) that have distinct intracellular localizations and affect the cell phenotype differently. We show here that the expression of FGF-2 CUG-initiated isoforms decreases in a cell-density-dependent manner in normal human skin fibroblasts (HSFs) concomitantly with the FGF-2 mRNA level. In contrast, CUG-initiated FGF-2 expression is constitutive in SK-HEP-1 cells and in HSFs transformed with SV40 large T antigen. Cell transfection using a plasmid containing the FGF-2 mRNA leader fused to chloramphenicol acetyl transferase demonstrated that up-regulation of the CUG codons depends on cis-elements located in this leader. Furthermore, UV cross-linking experiments revealed a correlation between CUG codons utilization and the binding of several proteins to the mRNA leader. On the basis of the presence of an internal ribosome entry site (IRES) in the FGF-2 mRNA, we used bicistronic vectors to transfect normal and transformed cells. The density-dependent regulation in normal HSFs was cap-dependent, whereas the constitutive CUG-initiated FGF-2 expression in transformed cells occurred essentially by an IRES-dependent mechanism. Unexpectedly, the use of the AUG start codon occurred exclusively by internal entry, which suggests the presence of a second independent IRES in the FGF-2 mRNA that would be constitutive. A study of the eIF-4E levels and of the 4E-BP1 phosphorylation state at increasing cell densities showed a decrease of the eIF-4E level, concomitant with 4E-BP1 dephosphorylation in normal cells but not in transformed cells. These data point out a complex mechanism for the regulation of FGF-2 isoforms expression involving both the cap-dependent and the cap-independent initiation of translation and favor a positive role of CUG-initiated FGF-2 in cellular proliferation and transformation.  相似文献   

13.
Rlk/Txk is a member of the BTK/Tec family of tyrosine kinases and is primarily expressed in T lymphocytes. Unlike other members of this kinase family, Rlk lacks a pleckstrin homology (PH) domain near the amino terminus and instead contains a distinctive cysteine string motif. We demonstrate here that Rlk protein consists of two isoforms that arise by alternative initiation of translation from the same cDNA. The shorter, internally initiated protein species lacks the cysteine string motif and is located in the nucleus when expressed in the absence of the larger form. In contrast, the larger form is cytoplasmic. We show that the larger form is palmitoylated and that mutation of its cysteine string motif both abolishes palmitoylation and allows the protein to migrate to the nucleus. The cysteine string, therefore, is a critical determinant of both fatty acid modification and protein localization for the larger isoform of Rlk, suggesting that Rlk regulation is distinct from the other Btk family kinases. We further show that Rlk is phosphorylated and changes localization in response to T-cell-receptor (TCR) activation and, like the other Btk family kinases, can be phosphorylated and activated by Src family kinases. However, unlike the other Btk family members, Rlk is activated independently of the activity of phosphatidylinositol 3-kinase, consistent with its lack of a PH domain. Thus, Rlk has two distinct isoforms, each of which may have unique properties in signaling downstream from the TCR.  相似文献   

14.
15.
The accumulation of nicotinic acetylcholine receptors (AChRs) at neuromuscular synapses is triggered by agrin, a protein that is synthesized by both nerve and muscle. Nerve-derived agrin, which contains an amino acid insert at a conserved splice site in the carboxy-terminal part of the protein, induces AChR aggregation and causes tyrosine phosphorylation of the AChR beta subunit. In contrast, agrin isoforms synthesized by muscle cells lack such an insert and have no effect on AChR distribution. In order to identify possible functional roles of muscle-derived agrin we have analyzed further the effect of various fragments of recombinant agrin on AChR phosphorylation. A carboxy-terminal fragment of muscle agrin, c95A0B0, reduced AChR gamma and delta subunit phosphorylation when added to C2C12 myotubes in culture. Although c95A0B0 had no effect on AChR beta subunit phosphorylation when added alone, it inhibited AChR beta subunit phosphorylation and AChR aggregation by the nerve-specific agrin isoform c95A4B8. We conclude that muscle-derived agrin can influence, both directly and indirectly, AChR phosphorylation. Such changes may play a role in the formation, maintenance, or function of the neuromuscular junction.  相似文献   

16.
Primary T-cells are metabolically quiescent, with little DNA, RNA or protein synthesis. Upon mitogenic stimulation the rate of protein synthesis increases 10-fold. We have studied the role of eIF-2 and eIF-4 alpha (eIF-4E) expression in the mechanism of translational activation. During this period, the levels of eIF-2 alpha and eIF-4 alpha mRNA increase some 50-fold. Similar to the increase in ribosomes and mRNA, the number of eIF-2 alpha, eIF-2 beta, and eIF-4 alpha molecules per cell also increase 2-3-fold. This suggests that in addition to an increase in the pool size of translational components, an additional mechanism exists which results in an increased efficiency of factor utilization. We have looked at initiation factor phosphorylation. We find that eIF-2 alpha does not undergo significant changes in its phosphorylation state nor is there a change in the efficiency of eIF-2 utilization. However, there is a rapid increase in the phosphorylation state of eIF-4 alpha which correlates with the rapid increase in translational activity. It thus appears there are 2 distinct components responsible for the translational activation of quiescent T-cells during mitogenic stimulation. The first is the phosphorylation of eIF-4 alpha, with a concomitant increase in the efficiency of eIF-4 alpha utilization. The second is an increase in the pool sizes of eIF-2 and eIF-4 alpha.  相似文献   

17.
Engagement of immunoreceptors in hemopoietic cells leads to activation of Src family tyrosine kinases as well as Syk or ZAP-70. Current models propose that Src family kinases are critical in immune response signal transduction through their role in phosphorylation of tyrosine residues within immunoreceptor tyrosine activation motifs (ITAMs; which recruit the SH2 domains of Syk or ZAP-70) and by direct phosphorylation of Syk and ZAP-70. Several lines of evidence suggest that Syk may not show the same dependence on activation by Src family kinases as ZAP-70. In this report, we used COS cells transiently transfected with components of the Fc epsilon RI complex (Lyn, Syk, and a chimeric CD8 receptor containing the cytoplasmic domain of the gamma subunit of Fc epsilon RI (CD8-gamma)) to examine the regulation of Syk activity. Syk was activated and phosphorylated in COS cells cotransfected with Lyn; however, in cells expressing CD8-gamma, activation of Syk and phosphorylation of CD8-gamma did not require coexpression of Lyn. Additional experiments indicate that gamma phosphorylation is dependent on Syk kinase activity and is independent of endogenous COS cell kinases. In parallel experiments, ZAP-70 was not activated by cotransfection with CD8-gamma, nor was CD8-gamma phosphorylated when coexpressed with ZAP-70 alone. Taken together, these studies indicate that Syk can be distinguished from ZAP-70 in its ability to be activated by coexpression with an ITAM-containing receptor without coexpression of a Src family kinase, and that Syk is capable of phosphorylating ITAM tyrosines under certain experimental conditions.  相似文献   

18.
Perturbants of the endoplasmic reticulum (ER), including Ca(2+)-mobilizing agents, provoke a rapid suppression of translational initiation in conjunction with an increased phosphorylation of the alpha-subunit of eukaryotic initiation factor (eIF)-2. Depletion of ER Ca2+ stores was found to signal the activation of a specific eIF-2 alpha kinase. Analysis of extracts derived from cultured cells that had been pretreated with Ca2+ ionophore A23187 or thapsigargin revealed a 2-3-fold increase in eIF-2 alpha kinase activity without detectable changes in eIF-2 alpha phosphatase activity. A peptide of 65-68 kDa, which was phosphorylated concurrently with eIF-2 alpha in extracts of pretreated cells, was identified as the interferon-inducible, double-stranded RNA (dsRNA)-regulated protein kinase (PKR). Depletion of ER Ca2+ stores did not alter the PKR contents of extracts. When incubated with reovirus dsRNA, extracts derived from cells with depleted ER Ca2+ stores displayed greater degrees of phosphorylation of PKR and of eIF-2 alpha than did control extracts. The enhanced dsRNA-dependent phosphorylation of PKR was observed regardless of prior induction of the kinase with interferon. Lower concentrations of dsRNA were required for maximal phosphorylation of PKR in extracts of treated as compared to control preparations. These findings suggest that PKR mediates the translational suppression occurring in response to perturbation of ER Ca2+ homeostasis.  相似文献   

19.
20.
Type I phosphatidylinositol 4-phosphate (PtdIns(4)P) 5-kinases (PIP5K) catalyze the synthesis of phosphatidylinositol 4, 5-bisphosphate, an essential lipid molecule in various cellular processes. Here, we report the cloning of the third member (PIP5Kgamma) and the characterization of members of the type I PIP5K family. Type I PIP5Kgamma has two alternative splicing forms, migrating at 87 and 90 kDa on SDS-polyacrylamide gel electrophoresis. The amino acid sequence of the central portion of this isoform shows approximately 80% identity with those of the alpha and beta isoforms. Northern blot analysis revealed that the gamma isoform is highly expressed in the brain, lung, and kidneys. Among three isoforms, the beta isoform has the greatest Vmax value for the PtdIns(4)P kinase activity and the gamma isoform is most markedly stimulated by phosphatidic acid. By analyzing deletion mutants of the three isoforms, the minimal kinase core sequence of these isoforms were determined as an approximately 380-amino acid region. In addition, carboxyl-terminal regions of the beta and gamma isoforms were found to confer the greatest Vmax value and the highest phosphatidic acid sensitivity, respectively. It was also discovered that lysine 138 in the putative ATP binding motif of the alpha isoform is essential for the PtdIns(4)P kinase activity. As was the case with the alpha isoform reported previously (Shibasaki, Y., Ishihara, H., Kizuki, N., Asano, T., Oka, Y., Yazaki, Y. (1997) J. Biol. Chem. 272, 7578-7581), overexpression of either the beta or the gamma isoform induced an increase in short actin fibers and a decrease in actin stress fibers in COS7 cells. Surprisingly, a kinase-deficient substitution mutant also induced an abnormal actin polymerization, suggesting a role of PIP5Ks via structural interactions with other molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号