首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The German nuclear safety standard KTA 2201: “Design of nuclear power plants against seismic events”, consists of the following parts: 1. basic principles; 2. characteristics of seismic excitation; 3. design of structural components; 4. design of mechanical and electrical parts; 5. seismic instrumentation; and 6. measures subsequent to earthquakes.While Part 1 was published in June 1975, Part 5 was approved by the Nuclear Safety Standards Commission — Kerntechnischer Ausschuss (KTA) — in June 1977. The other parts are still under development. The requirements of the safety standard KTA 2201.5 deal with
1. (a) number of location (number and location of acceleration recording systems for different sites, single-block plants and multi-block plants);
2. (b) characteristics of instruments (readiness and operation of instruments, margin or errors, dynamic and operation characteristics, duration of records, seismic switch);
3. (c) triggering and information (loss of electric power, start of the acceleration recording systems, threshold of acceleration for triggers and seismic switches, optical and acoustic information); and
4. (d) documentation (results of recordings, inspection and tests).
The purpose of this paper is to present some detailed requirements of the safety standard KTA 2201.5, with its philosophy, and compare these with corresponding requirements in the US. It will be shown that with relatively few instruments, which are very reliable in operation and in triggering, an optimum of data may be available after an earthquake.  相似文献   

2.
In recent years a number of seismic probabilistic risk assessments of nuclear power plants have been conducted. These studies have highlighted the significance of seismic events to the overall plant risk and have identified several dominant contributors to the seismic risk. It has been learnt from the seismic PRAs that the uncertainty in the seismic hazard results contribute to the large uncertainty in the core damage and severe release frequencies. A procedure is needed to assess the seismic safety of a plant which is somewhat removed from the influence of the uncertainties in seismic hazard estimates. In the last two years, seismic margin review methodologies have been developed based on the results and insights from the seismic probabilistic risk assessments. They focus on the question of how much larger an earthquake should be beyond the plant design basis before it compromises the safety of the plant. An indicator of the plant seismic capacity called the High Confidence Low Probability of Failure (HCLPF) capacity, is defined as the level of earthquake for which one could state with high confidence that the plant will have a low probability of severe core damage. The seismic margin review methodologies draw from the seismic PRAs, experience in seismic analyses, testing and actual earthquakes in order to minimize the review effort. The salient steps in the review consists of preliminary screening of components and systems, performance of detailed seismic walkdowns and evaluation of seismic margins for components, systems and plant.  相似文献   

3.
The United States Nuclear Regulatory Commission initiated a formal review of the seismic margin of all operating nuclear power plants in the US with the issuance in 1991 of Generic Letter 88-20, Supplement 4 (‘Individual Plant Examination of External Events (IPEEE) for Severe Accident Vulnerabilities’). Virtually all of the US nuclear utilities have submitted their responses for seismic IPEEE and these submittals are in the process of being reviewed by the NRC. The objective of this paper is to provide an industry perspective on the results and the insights obtained from the utility seismic IPEEE submittals.  相似文献   

4.
In Japan, the Nuclear Power Engineering Corporation (NUPEC), sponsored by the Ministry of Economy, Trade and Industry (METI), had conducted a series of seismic reliability proving tests using full-scale or close to full-scale models to simulate an actual important equipment that is critical for seismic safety of nuclear power plants. The tests are intended to validate the seismic design and reliability with a sufficient margin even under destructive earthquakes. A series of tests was carried out on a reinforced concrete containment vessel (RCCV) for advanced boiling water reactor (ABWR) from 1992 to 1999. A large-scale high-performance shaking table at Tadotsu Engineering Laboratory, was used for this test. The test model and the results of pressure and leak tests are described in Part 1. Test procedures, input waves and the results of verification tests such as changes of stiffness, characteristic frequency and damping ratio, the failure of the model and the load–deformation relationship are described in Part 2. Part 3 reports the seismic design safety margin that was evaluated from the energy input during the failure test to a design basis earthquake. Part 4 will report simulation analysis results by a stick model with lumped masses.  相似文献   

5.
This paper presents a review and evaluation of the design standards and the analytical and experimental methods used in the seismic design of nuclear power plants with emphasis on United States practice. Three major areas were investigated: (a) soils, siting, and seismic ground motion specification; (b) soil-structure interaction; and (c) the response of major nuclear power plant structures and components. The purpose of this review and evaluation program was to prepare an independent assessment of the state-of-the-art of the seismic design of nuclear power plants and to identify seismic analysis and design research areas meriting support by the various organizations comprising the ‘nuclear power industry’. Criteria used for evaluating the relative importance of alternative research areas included the potential research impact on nuclear power plant siting, design, construction, cost, safety, licensing, and regulation.Three methods were used in the study herein. The first involved the review of current literature, focusing primarily on publications dated later than 1970. This review included the results of numerous studies, of which those of Japanese origin and those presented in recent international conferences were predominant. The second method entailed a review of international experience in the dynamic testing of nuclear power plant structures and components, and related experience with scaled and model tests. Included in this experience, in addition to the questions of analysis, design, and measurement of dynamic parameters, are related efforts involving a review of responses obtained during measured earthquake response and investigations into appropriate methods for backfitting or upgrading older nuclear power plants to meet new seismic criteria.The third approach was to obtain the opinions and recommendations of technically knowledgeable individuals in the US ‘nuclear industry’; the survey results are shown in the Appendix.  相似文献   

6.
As part of the implementation of the severe accident policy, nuclear power plants in the US are conducting the individual plant examination of external events (IPEEE). Seismic events are treated in these IPEEEs by either a seismic probabilistic risk assessment (PRA) or a seismic margin assessment. The major elements of a seismic PRA are the seismic hazard analysis, seismic fragility evaluation of structures and equipment and systems analysis using event tree and fault tree analysis techniques to develop accident sequences and calculate their frequencies of occurrence. The seismic margin assessment is a deterministic evaluation of the seismic margin of the plant beyond the design basis earthquake. A review level earthquake is selected and some of the components that are on the success paths are screened out as exceeding the review level earthquake; the remaining ones are evaluated for their seismic capacity using information from the original plant design criteria, test data and plant walkdown. The IPEEEs of over 100 operating nuclear power plants are nearing completion. This paper summarizes the lessons learned in conducting the IPEEEs and their applicability to nuclear power plants outside of the United States.  相似文献   

7.
An investigation of the significance of non-linear behavior in the seismic response of the experimental gas-cooled reactor (ECGR) facility has been performed using explosives impulses and ‘snapback’ tests. The study focuses on soil-structure interaction effects and non-linear characteristics of containment building and steam generator responses. Comparison of the result of these at large excitation levels (corresponding to large earthquakes) with the results of earlier steady-state low-level vibration tests shows marked departures from response predicted by conventional linear modeling. The results illustrate the significant non-conservative errors possible when using linear theory to predict large amplitude responses of systems exhibiting non-linear behavior.  相似文献   

8.
This paper presents the results of a study that develops an engineering and seismological basis for selecting a lower-bound magnitude (LBM) for use in seismic hazard assessment. As part of a seismic hazard analysis the range of earthquake magnitudes that are included in the assessment of the probability of exceedance of ground motion must be defined. The upper-bound magnitude is established by earth science experts based on their interpretation of the maximum size of earthquakes that can be generated by a seismic source. The lower-bound or smallest earthquake that is considered in the analysis must also be specified.The LBM limits the earthquakes that are considered in assessing the probability that specified ground motion levels are exceeded. In the past there has not been a direct consideration of the appropriate LBM value that should be used in a seismic hazard assessment. This study specifically looks at the selection of a LBM for use in seismic hazard analyses that are input to the evaluation/design of nuclear power plants (NPPs). Topics addressed in the evaluation of a LBM are earthquake experience data at heavy industrial facilities, engineering characteristics of ground motions associated with small-magnitude earthquakes, probabilistic seismic risk assessments (seismic PRAs), and seismic margin evaluations. The results of this study and the recommendations concerning a LBM for use in seismic hazard assessments are discussed.  相似文献   

9.
Under the auspices of the U.S. Nuclear Regulatory Commission (NRC), Brookhaven National Laboratory (BNL) developed a comprehensive program to evaluate state-of-the-art methods and computer programs for seismic analysis of typical coupled nuclear power plant (NPP) systems with non-classical damping. In this program, four benchmark models of coupled building-piping/equipment systems with different damping characteristics were developed and analyzed by BNL for a suite of earthquakes. The BNL analysis was carried out by the Wilson-θ time domain integration method with the system-damping matrix computed using a synthesis formulation as presented in a companion paper [Nucl. Eng. Des. (2002)]. These benchmark problems were subsequently distributed to and analyzed by program participants applying their uniquely developed methods and computer programs. This paper is intended to offer a glimpse at the program, and provide a summary of major findings and principle conclusions with some representative results.The participant’s analysis results established using complex modal time history methods showed good comparison with the BNL solutions, while the analyses produced with either complex-mode response spectrum methods or classical normal-mode response spectrum method, in general, produced more conservative results, when averaged over a suite of earthquakes. However, when coupling due to damping is significant, complex-mode response spectrum methods performed better than the classical normal-mode response spectrum method. Furthermore, as part of the program objectives, a parametric assessment is also presented in this paper, aimed at evaluation of the applicability of various analysis methods to problems with different dynamic characteristics unique to coupled NPP systems. It is believed that the findings and insights learned from this program will be useful in developing new acceptance criteria and providing guidance for future regulatory activities involving license applications of these alternate methods to coupled systems.  相似文献   

10.
Seismic design and analysis of nuclear plant systems, structures and components have requested huge effort and tremendous costs in the past two decades. The extended use of sophisticated, linear response type methods (modal analysis, spectral response) and the associated conservatism are responsible for the significant stiffening of the piping systems and the multiplication of supports and snubbers. The remedy used against the seismic risk seems worse than the pain itself, and safety might be impaired rather than improved. Indeed, system stiffening increases the average load level in normal operation (stresses, fatigue, nozzle loads, etc.); supports do not behave ideally as assumed (friction, rust, etc.) and snubbers are remarkably unreliable. On the other hand, experience with actual earthquakes shows that industrial facilities designed using very simplistic seismic techniques, or even no seismic requirement at all, suffer essentially no damage, even in the case of a large earthquake. This paradox challenges the traditional seismic design techniques, and appeals for revised seismic qualification methods of piping systems. When the assumption of the occurrence of an earthquake event is made in a plant in operation, which has not been designed against seismic criteria, the use of the standard seismic qualification techniques is still more questionable; simplified (quasi-static) techniques offer in this case a valuable and economically justified alternative. The paper describes the application of the quasi-static “modified load coefficient method” to the seismic assessment of the piping in a nuclear plant in operation, designed during the pre-seismic era.  相似文献   

11.
The seismic qualification of equipment in operating nuclear plants has been identified as a potential safety concern in U.S. Nuclear Regulatory Commission (USNRC) Unresolved Safety Issue (USI) A-46, “Seismic Qualification of Equipment in Operating Nuclear Power Plants”. In response to this concern, the Seismic Qualification Utility Group (SQUG), with support from the Electric Power Research Institute (EPRI), has undertaken a program to demonstrate the seismic adequacy of essential equipment by the use of actual experience with such equipment in plants which have undergone significant earthquakes and by the use of available test data for similar equipment. An important part of this program is the development of the methodology and test data for verifying the functionality of electrical relays used in essential circuits needed for plant shutdown during a seismic event. This paper describes the EPRI supported relay testing program to supplement existing relay test data. Many old relays which are used in safe shutdown systems of SQUG plants and for which seismic test data do not exist have been shake-table tested. The testing performed on these relays and the test results for two groups of relays are summarized in this paper.  相似文献   

12.
In Japan, the Nuclear Power Engineering Corporation (NUPEC), sponsored by the Ministry of Economy, Trade and Industry (METI), has been conducting a series of seismic reliability proving tests using full-scale or close to full-scale models to simulate actual important equipment that is critical for seismic safety of nuclear power plants. The tests are intended to validate the seismic design and reliability with a sufficient margin even under destructive earthquakes. A series of tests was carried out on a reinforced concrete containment vessel (RCCV) for advanced boiling water reactor (ABWR) from 1992 to 1999. A large-scale high-performance shaking table at Tadotsu Engineering Laboratory, the largest in the world, was used for this test. Part 1 reports the test model and the results of pressure and leak tests. Part 2 describes test procedures, input waves and the results of verification tests such as changes of stiffness, characteristic frequency and damping ratio, the failure of the model and the load deflection. Part 3 shows the seismic safety margin that was evaluated from the energy input during the failure test to a design basis earthquake. Part 4 reports simulation analysis results by a stick model with lumped masses.  相似文献   

13.
In Japan, the Nuclear Power Engineering Corporation (NUPEC), sponsored by the Ministry of Economy, Trade and Industry (METI), has been conducting a series of seismic reliability proving tests using full-scale or close to full-scale models to simulate actual important equipment that is critical for seismic safety of nuclear power plants. The tests are intended to validate the seismic design and reliability with a sufficient margin even under destructive earthquakes. A series of tests was carried out on a reinforced concrete containment vessel (RCCV) for advanced boiling water reactor (ABWR) from 1992 to 1999. A large-scale high-performance shaking table at Tadotsu Engineering Laboratory, the largest in the world, was used for this test. Part 1 reports the test model and the results of pressure and leak tests. Part 2 describes test procedures, input waves and the results of verification tests such as changes of stiffness, characteristic frequency and damping ratio, the failure of the model and the load deflection. Part 3 shows the seismic safety margin that was evaluated from the energy input during the failure test to a design basis earthquake. Part 4 reports simulation analysis results by a stick model with lumped masses.  相似文献   

14.
The steady-state response of structures to harmonic excitation is of both direct and indirect importance. Such a response is of obvious direct importance in problems which involve excitation from rotating machinery or other sources of steady harmonic excitation. It is also of indirect importance in problems involving transient excitation where knowledge of the harmonic response may be used in estimating and interpreting the transient structural response. For example, the “effective” natural frequencies, damping ratios and mode shapes identified from full-scale harmonic tests of structures are often used to interpret the transient non-linear response of these structures to earthquakes. The non-linearity is confined to the connection between the structure and the moving base. This system might be a highly idealized model for a reactor structure including non-linear seismic isolation effects.In this paper a phase resonance method is given for damping characteristic identification of the nonlinear device seismic isolation in the harmonic excitation case. The method allows the shape of the symmetric function of the system to be determined, when is not known. If Fd(x) is asymmetric then the elasticity characteristic should be known.The identification algorithm has been derived assuming that Fd(x) is given in an analytic form. The validity of the method was checked for some systems with strongly nonlinear damping characteristics.  相似文献   

15.
A 1/8-scale model was constructed of a reinforced concrete containment vessel (RCCV) used in the latest advanced boiling water reactors (ABWR). Shaking table tests were conducted on it with input motions corresponding to or exceeding a design earthquake assumed for a real Nuclear Power Plant.The objectives of the tests were to verify the structural integrity and the leak-proof functional soundness of the RCCV subjected to design earthquakes, and to determine the ultimate strength and seismic margin by an excitation that led to the model's collapse. The model, the test sequence and the pressure and leak test results were addressed in Part 1. The shaking table test method, the input motions and the test results, including the transition of the model's stiffness, natural frequencies and damping factors and the effects of vertical input motions and internal pressure on the model's characteristics and behavior, the load–deformation, the ultimate strength, the failure mode of the reinforced concrete portion and the liner plate are described here. The seismic safety margin that was evaluated by the energy input during the failure test to a design basis earthquake will be described in Part 3. The analytical results of simulation using the multi-lumped mass model will be described in Part 4.  相似文献   

16.
This paper summarizes the work performed by the International Atomic Energy Agency in the areas of safety review and applied research in support of programmes for the assessment and enhancement of seismic safety in Eastern Europe and in particular, WWER type nuclear power plants during the past seven years. Three major topics are discussed; engineering safety review services in relation to external events, technical guidelines for the assessment and upgrading of WWER type nuclear power plants, and the Coordinated Research Programme on "Benchmark study for the seismic analysis and testing of WWER type nuclear power plants". These topics are summarized in a way to provide an overview of the past and present safety situation in selected WWER type plants which are all located in Eastern European countries. The main conclusion of this paper is that even though there is now a thorough understanding of the seismic safety issues in these operating nuclear power plants, the implementation of seismic upgrades to structures, systems and components are lagging behind, particularly for those cases in which re-evaluation indicated the necessity to strengthen the safety related structures or install new safety systems.  相似文献   

17.
Most engineering structures may respond nonlinearly when exposed to high intensity loading, such as earthquakes. Since the latter reveal distinct random properties, methods are required by which nonlinear MDOF-systems under stochastic excitation can be treated. So far in probabilistic nonlinear dynamics, only SDOF-systems can be analysed such that the results can be applied for a credible reliability analysis. The analysis of the stochastic response of nonlinear MDOF-systems, however, is still confined to biased estimates of its first two statistical moments. The method introduced in this paper can treat this class of problems in an efficient manner. By utilizing and expanding the method of equivalent linearization, information on the type of distribution — which is indispensable for a realistic reliability analysis — is obtained. The method is based on non-Gaussian equivalent linearization and on the Fokker-Planck equation. Non-Gaussian equivalent linearization admits the consideration of non-Gaussian properties of the stochastic response using non-linear transformations. The required nonlinear transformations are determined numerically by utilizing the Fokker-Planck equation.  相似文献   

18.
An estimate is made of the average probabilities of different magnitudes of peak horizontal ground acceleration due to seismic events in that part of the United States east of the Rockies. Past history is used to provide an average seismicity and future earthquakes are assumed to occur randomly with regard to location and time. With the seismic correlations employed, the average probability per year that an acceleration ≥0.15 g will occur at any point is about 10−3, while the average probability per year of an acceleration ≥0.3 g at a random site is about three times smaller. The very considerable uncertainties in these estimates are illustrated in part by examining differences which would arise with a different choice of seismic correlations.  相似文献   

19.
The elastomer bearing pads used since 1963 as supports for prestressed concrete pressure vessels (PCPVs) was quickly chosen by Electricité de France (ED) to improve the capability of nuclear power plants (NPPs) to withstand strong earthquakes and to reduce the seismic loads on structures and equipment. The standardized units for 900 and 1300 MW(e) pressurizedwater reactor (PWR) plants have moderate seismic design loads of 0.2 and 0.15 g, respectively. These design loads were exceeded by the site dependent spectra of Cruas (France) and Koeberg (South Africa). To keep the plant design unchanged and to take the advantages of standardization, these units were put on laminated bearings with or without sliding plates. For the future French 1500 MW(e) fast breeder reactors (FBRs), which are more sensitive to seismic loads, the base isolation is considered by EDF at the beginning of the design, even for low ground motions of 0.1 g. The buildings are placed on laminated bearings while the reactor block is supported by springs and dampers. The isolated plant has identical costs as a conventional design such as SPX1 at Creys—Malville.  相似文献   

20.
An experimental investigation on the seismic response of ground-supported, cylindrical metal tanks is described. Experimental and analytical research by other investigators over the past forty years has provided a firm basis for the computation of free- and forced-vibration behavior in ideal liquid-filled circular cylindrical shells with a variety of elementary support conditions. However, the actual seismic behavior of ground-supported tanks has not been known, and practical design methods necessarily have been based on simplifying assumptions. The present results provide the first opportunity for rational evaluation of seismic design assumptions, and suggest theoretical developments which would enhance the realism of refined seismic analyses.The aluminum scale model discussed here, 12 ft in diameter and 6 ft high, represents a 36-ft diameter steel prototype. It was tested, in anchored and unanchored base configurations, under action of a time-scaled El Centro, 1940, earthquake with peak acceleration of 0.5 g, using the Earthquake Simulator Facility of the University of California, Berkeley. Stresses and displacements of the model, in both anchored and unanchored conditions, were dominated by effects of “out-of-round” response in higher-order circumferential modes, a result which is not predicted by current seismic analysis theory, and which contradicts basic assumptions of current design practice. The experimental observations are discussed in relation to dynamic analysis theory, practical design methods, and the history of tank performance in past earthquakes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号