首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 186 毫秒
1.
太西无烟煤制备微孔活性炭的试验研究   总被引:6,自引:5,他引:6  
研究了在硝酸盐与含钾化合物两种添加剂作用下用太西无烟煤制备微孔活性炭的试验条件。其制备工艺为经粉磨的原料煤和添加剂混捏挤条,然后炭化和活化。在试验中利用正交试验法,选定两种添加剂比例、炭化升温速度、活化温度、活化时间作为考查的四个因素,微孔孔容作为考查指标,得出了最佳水平组合:添加剂硝酸盐与含钾化合物的质量比为2:1,炭化升温速度5℃/min,活化温度920℃,活化时间3.5h。用氮气吸附法对活性炭产品进行分析,并用BET法、D-R方程和密度函数理论(DFT)表征了活性炭产品的比表面、总孔容、微孔孔容和孔径分布等性能指标。并对添加质量分数为6%的添加剂和无添加剂,其余因素取最佳水平值制得的活性炭产品用DFT法进行了孔径分布分析。结果表明,相同条件下添加质量分数为6%的添加剂制得的活性炭在微孔孔容和总孔容方面都有较大的提高:微孔孔容从0.1847mL/g提高到0.3299mL/g,总孔容从0.2186mL/g提高到0.5128mL/g。  相似文献   

2.
以马尾藻为原料,采用KOH活化法制备高比表面积活性炭。探索制备马尾藻基活性炭的实验方案和最佳工艺条件。采用正交实验法研究了炭化温度、炭化时间、低温活化温度、低温活化时间和浸渍时间对制得活性炭比表面积和孔容的影响。采用N_2吸附、SEM表征考察了活性炭的孔隙结构和表面形貌。通过正交实验法分析发现,制备马尾藻基高比表面积活性炭的最佳工艺条件为:炭化温度600℃,炭化时间180min,低温活化温度400℃,低温活化时间45min,浸渍时间2h。在16组实验条件下,制备的活性炭比表面积最大为3 122m2/g,所有样品的孔径几乎全部分布在6nm以内。  相似文献   

3.
以自制的聚丙烯腈(PAN)基球为炭前驱体,经空气预氧化、炭化和活化处理制备了高比表面积的球状活性炭。着重考察了温度对PAN球状活性炭制备过程中预氧化、炭化和活化的影响。借助红外光谱(IR)、热重分析(TG)、差热分析(DTA)、扫描电镜(SEM)、比表面积(BET)分析仪等表征手段,对不同温度条件下的PAN球状活性炭的结构变化、转变机理进行了探讨。结果表明:预氧化温度和活化温度分别以300℃和800℃为最佳,相应的比表面积可达1190m2 g-1。  相似文献   

4.
紫茎泽兰同时制备活性炭及高热值燃气实验研究   总被引:2,自引:1,他引:1  
以紫茎泽兰为原料,通过物理活化同时制得活性炭和高热值燃气。考察了活化温度、时间、CO2流量对多孔碳产品吸附性能和得率的影响。通过响应曲面法得到实验优化工艺条件:活化温度980℃,活化时间130min,CO2流量400mL/min,所制得活性炭碘吸附值和得率分别为1002mg/g,15.79%。制得的多孔碳BET比表面积、孔容和平均孔径分别为1076m2/g、0.63mL/g、2.36nm。在此优化条件下得到高热值燃气,燃气热值达11542.32kJ/m3。  相似文献   

5.
活化前铵盐处理对活性炭纤维吸附甲烷的影响   总被引:2,自引:0,他引:2  
赵乃勤  乔志军  李家俊  何绯  师春生 《功能材料》2003,34(3):342-343,351
以沥青基炭纤维为原料,采用铵盐溶液对炭纤维浸渍处理、(H2O C02)活化的方法制备活性炭纤维,研究了铵盐浸渍对活性炭纤维甲烷吸附性能的影响。结果表明:铵盐预处理对提高活性炭纤维比表面积、孔容和活化产率有明显效果,是一种较好的预处理液。经铵盐处理得到的活性炭纤维较未处理活性炭纤维的甲烷吸附量高,但吸附量增加幅度小于比表面积和孔容的增加幅度。活性炭纤维的甲烷吸附量与微孔的孔径分布密切相关。  相似文献   

6.
脱硫活性炭纤维成形及SO2吸附性能   总被引:5,自引:0,他引:5  
本文研究脱硫活性炭纤维(以纤维素纤维为原料)的炭化、活化及吸附规律,分析讨论了各因素对炭纤维成型的影响,以及与脱硫的关系。结果表明,获得较高比表面积的活性炭纤维,应控制炭化升温速率,炭化温度850℃,活化温度850℃,活化时间30 ̄45min,比表面积最大达1600m^2/g,动态,静态SO2吸附量达粒状活性炭的4 ̄5倍。  相似文献   

7.
以荞麦壳为原料,以KOH活化法制备活性炭,研究了炭化时间、炭化温度对活性炭性能的影响。结果表明:在活化条件不变的情况下,炭化时间和炭化温度对活性炭性能具有重要影响,制备活性炭的较优工艺参数为:炭化时间为3h,炭化温度为500℃。同时,制备得到的活性炭比表面积为1436.047m~2/g,碘吸附值为1528.61mg/g。  相似文献   

8.
用质量分数65%的浓硝酸分别浸渍炭化前和炭化后的蚕茧,然后在不同温度条件下进行热处理,得到改性活性炭纤维材料。利用低温氮气吸附-脱附仪、傅里叶变换红外光谱仪、扫描电子显微镜和透射电子显微镜对改性前后活性炭纤维材料的孔结构和电化学性能进行分析表征。用循环伏安、交流阻抗和恒流充放电等测试方法研究了活性炭纤维电极材料的炭化温度和炭化顺序对中孔炭孔结构及电化学性能的影响。结果表明:随着炭化温度的升高,活性炭纤维电极材料比表面积和孔容逐渐增加;炭化温度为600℃时,采用先炭化后吸附方法制备的活性炭纤维电极材料比电容可以达到124.56F/g,比先吸附后炭化制备的样品比电容(82.69F/g)提高了约51%。  相似文献   

9.
以废弃的芋叶柄为原料,K2CO3为活化剂,制备芋叶柄基活性炭,考察炭化和活化工艺条件对活性炭吸附性能的影响,采用等温氮吸脱附测试、扫描电子显微镜(SEM)对样品材料进行了测试。结果表明:若以碘吸附值作为评价指标,最佳工艺条件为K2CO3浓度200g/L、活化温度850℃、活化时间35min,碘值为1930.4mg/g,BET比表面积为633.215m2/g,孔容为0.194cm3/g,孔径为18.45nm。以亚甲基蓝吸附值作为评价指标,最佳工艺条件为K2CO3浓度175g/L、活化温度875℃、活化时间35min,亚甲基蓝吸附值为298.8mg/g,BET比表面积为604.708m2/g,孔容为0.076cm3/g,孔径为18.533nm。  相似文献   

10.
煤基成型活性炭活化实验研究及性能表征   总被引:1,自引:1,他引:0  
以低变质粉煤与液化残渣为原料,水蒸气为活化剂,研究了活化时间与活化温度对成型活性炭吸附性能、抗压强度和活性炭收率的影响。采用N2吸附、SEM、碘吸附等手段对成型活性炭的孔径分布及吸附性能进行了分析表征。研究表明,经700℃炭化1.0h,800℃水蒸气活化1.5h制备的成型活性炭碘吸附值为820mg/g,活性炭收率为36.63%,抗压强度为0.08MPa,比表面积为509m2/g,其总孔容积达0.35cm3/g。随着活化时间的延长,成型活性炭的碘吸附值先增大后减小,炭化收率和抗压强度都逐渐降低;随着活化温度的升高,成型活性炭的碘吸附值先增大后减小,炭化收率和抗压强度都逐渐减小。  相似文献   

11.
谢天时  端小平  李光 《材料导报》2012,26(12):97-100
聚丙烯腈(PAN)和聚甲基丙烯酸甲酯(PMMA)共混膜的结构和尺寸可由两组分比例和分子量调整。以PAN为碳前驱体,PMMA为热分解聚合物,并控制m(PAN)/m(PMMA)为30/70和70/30,通过湿法纺丝制备了PAN/PMMA共混纤维。以m(PAN)/m(PMMA)为30/70和70/30的共混纤维为原丝经碳化后获得了纳米碳纤维(CNFs)和多孔碳纤维(PCFs)。利用扫描电镜观察了所得CNFs和PCFs的形貌,发现单根CNFs的直径为50~150nm,PCFs中孔的直径为0.1~1μm。由CNFs和PCFs的拉曼光谱分析了不同碳化温度对CNFs和PCFs石墨化程度的影响,结果表明随碳化温度升高,石墨化程度也增加,同时电导率也随之提高。  相似文献   

12.
PAN纤维高温环境下氮结合态演变规律的研究   总被引:1,自引:0,他引:1  
通过使用XPS和XRD等表征手段研究了经低温碳化后PAN纤维中氮结合态的高温演变规律,推测了其反应机理,探讨了由氮结合态的演变所引起的纤维结构变化。结果表明:经低温碳化后PAN纤维中的氮主要以吡啶氮、叔胺氮和氨基/亚氨基3种结合态存在,当热处理温度在700℃以下时,纤维中吡啶氮含量最多;随着温度的升高,氨基/亚氨基和吡啶氮含量逐渐减少,而叔胺氮含量先呈增加趋势,温度升高到1000℃以后时,叔胺氮含量迅速下降;1300℃以后,纤维中的叔胺氮含量最多;PAN纤维中的氮以叔胺氮形式存在更有利于平面六元碳网的逐步完善。  相似文献   

13.
以粘胶纤维为原料,通过碳化、活化处理工艺制备活性碳纤维,采用XRD对其微观结构进行表征,并对其吸波性能进行测试,分析了纤维的微观结构与吸波性能的关系。结果表明,制备工艺对活性碳纤维的微观结构和吸波性能有较大影响。在其它工艺参数保持不变的条件下,随碳化温度的升高,活性碳纤维的石墨化程度和吸波性能均先提高后降低;随活化时间的延长,活性碳纤维内部结构趋向不规整化,对电磁波的损耗能力增强。在活化时间为18min、活化温度为900℃、碳化时间为60min、碳化温度为425℃条件下制备的活性碳纤维的吸波性能最佳,含0.6%(质量分数)纤维的树脂基复合材料在6.3~13.4GHz频率范围内对电磁波有-10dB以下的吸收,在8.5GHz时取得的最大反射衰减为-27.3dB。  相似文献   

14.
以沥青基炭纤维为原料,用水蒸气活化的方法制备了三种不同比表面积的活性炭纤维,并采用氮吸附法和拉曼光谱对活性炭纤维进行了表征。本文研究了活性炭纤维在常温下对模拟空气中50 ppm NO的催化氧化性能,结果表明,活性炭纤维可将NO部分催化转化为NO2,较低比表面积的活性炭纤维因为其较窄的孔径分布和较大的类石墨微晶有利于对NO的催化氧化。  相似文献   

15.
何沐  王宇  徐樑华 《材料工程》2021,49(4):120-127
聚丙烯腈(PAN)预氧纤维在低温炭化阶段经热裂解重组而转化为具有乱层石墨结构雏形的低温炭化纤维,此阶段的温度调控对最终碳纤维的结构与性能有着重要影响。采用13C固体核磁共振谱图(13C-NMR)、拉曼光谱(Raman)、X射线衍射(XRD)和力学性能分析等手段,研究预氧纤维在低温炭化阶段的反应进程、温度梯度调控对预氧纤维的结构演变和碳纤维结构及性能的影响。结果表明:PAN预氧纤维在低温炭化过程中,经450℃热处理后碳结构的支链化程度达到最大值0.99,当处理温度达到550℃后,以芳环链段的重组交联为主要反应。低温炭化温度梯度影响预氧纤维的结构演变进程,当采用350—450—650℃的梯度升温模式时,先经450℃处理的低碳纤维中—C—C基团的13C-NMR位移最大,表明纤维内的支化交联反应最多,再经650℃处理的纤维d002以及相应高碳纤维的IA/IG达到最大,说明其无定形碳相对含量最多,因而最终碳纤维的力学性能最差;当采用350—550—650℃的梯度升温模式时,纤维内裂解与重组交联反应有序开展,低碳和高碳纤维的碳结构更优,最终碳纤维的致密性及力学性能得到提升。  相似文献   

16.
为实现PAN纤维在低温碳化过程的结构调控,利用核磁共振碳谱(13C-NMR)研究了PAN预氧化纤维在500-800℃的低温碳化过程中骨架结构的演变.结果表明:在低温碳化过程中,随着碳化温度的升高,预氧化纤维骨架结构中饱和的CH、CH2和C=0结构逐渐消失,共轭-HC=C<和>C=N-逐渐减小,共轭>C=C<逐渐增加,纤...  相似文献   

17.
采用湿法纺丝得到聚丙烯腈(PAN)初生纤维,干燥后得到PAN初生纤维样品.利用电阻法确定初生纤维的共晶温度;获得初生纤维的冻干曲线;通过压汞法对初生纤维孔结构进行表征,并对比考察了鼓风干燥、自然风干和冷冻干燥对样品截面形貌的影响.结果表明:初生纤维的共晶温度为-55℃;鼓风干燥会使样品收缩,纤维间发生粘连,原有形貌被破坏;自然风干使样品的截面积和周长分别收缩了20.66%、10.67%,形状系数变化率为3.52%.而冷冻干燥时样品的截面积和周长仅收缩了1.21%、1.15%,形状系数变化率为1.13%.冷冻干燥有效地保留了PAN初生纤维的固有原始结构,可用于制备各种分析的样品.  相似文献   

18.
利用染料吸附评价活性炭纤维结构的初步研究   总被引:4,自引:0,他引:4  
研究了一系列不同结构的活性炭纤维对水溶液中碘、酚及亚甲基蓝、结晶紫、二甲酚橙的吸附特征。揭示了染料在活性炭纤维上吸附量的大小,明显受活性炭纤维孔宽的屏蔽作用(分子筛效应)的影响。初步提出可利用染料吸附特征与活性炭纤维的孔宽和染料分子的几何尺寸的相关性,简便地评价活性炭纤维的孔结构和液相吸附性能。  相似文献   

19.
Organic aerogels were synthesized by sol–gel polymerization of resorcinol (R) with formaldehyde (F) catalyzed by sodium carbonate (C) followed by vacuum drying. The influence of the resorcinol/sodium carbonate ratio (R/C) on the porous structure of the resultant aerogels was investigated. The nitrogen adsorption–desorption measurements show that the aerogels possess a well developed porous structure and mesoporosity was found to increase with increasing the R/C ratio. Carbon aerogels were obtained by carbonization of RF aerogels. The carbonization temperature impacts the microstructure of the aerogels by pore transformations during carbonization probably due to the formation of micropores and shrinkage of the gel structure. The results showed that a temperature of 1073 K is more effective in the development of the pore structure of the gel. Activated carbon aerogels were obtained from the CO2 activation of carbon aerogels. Activation results in an increase in the number of both micropores and mesopores, indicative of pore creation in the structure of the carbon. Activation at higher temperatures results in a higher degree of burn off and increases the pore volume and the surface area remarkably without change of the basic porous structure, pore size, and pore size distribution.  相似文献   

20.
通过溶液聚合得到胺化碳纳米管(Ami-CNT)/聚丙烯腈(PAN)复合溶液, 采用湿法纺丝技术制备了Amid-CNT/PAN复合纤维。利用红外光谱、 拉曼光谱、 差示扫描量热仪、 热失重仪和扫描电镜等方法分析Amid-CNT对PAN纤维结构的影响。结果表明: Amid-CNT与PAN大分子之间有很强的化学作用力; Amid-CNT在复合纤维中具有很高程度的取向, 使PAN纤维中氰基的取向从1.61提高到了2.30; 复合纤维在空气中的起始放热温度相对PAN纤维从212.30℃提前到206.01℃, 反应放热量从3054J/g降低到2346J/g; 复合纤维比PAN纤维的起始失重温度提前了3.7℃, 在700℃时的剩余质量提高了13.5%; 复合纤维的断面比PAN纤维具有更多的絮状结构。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号