首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
An effective method is developed for low temperature metal oxide deposition through thermal decomposition of metal diketonates in supercritical carbon dioxide (scCO2) solvent. The rates of Al(acac)3 (Aluminum acetyl acetonate) and Ga(acac)3 (Gallium acetyl acetonate) thermal decomposition in scCO2 to form conformal Al2O3 and Ga2O3 thin films on planar surfaces were investigated. The thermal decomposition reaction of Al(acac)3 and Ga(acac)3 was found to be initialized at  150 °C and 160 °C respectively in scCO2 solvent, compared to  250 °C and 360 °C in analogous vacuum-based processes. By measuring the temperature dependence of the growth rates of metal oxide thin films, the apparent activation energy for the thermal decomposition of Al(acac)3 in scCO2 is found to be 68 ± 6 kJ/mol, in comparison with 80–100 kJ/mol observed for the corresponding vacuum-based thermal decomposition reaction. The enhanced thermal decomposition rate in scCO2 is ascribed to the high density solvent which effectively reduces the energy of the polar transition states in the reaction pathway. Preliminary results of thin film deposition of other metal oxides including ZrOx, FeOx, Co2O3, Cr2O3, HfOx from thermal decomposition of metal diketonates or fluorinated diketonates in scCO2 are also presented.  相似文献   

2.
8 mol.% yttria-doped cubic zirconia (8Y-CSZ)/AI2O3 composites containing 0-30 vol.% Al2O3 particles were fabricated by sintering, followed by hot isostatic pressing (post-HIPing). All composites were densified to at least 99·5% of the theoretical density by post-HIPing. The bending strength of composites sintered at 1500°C in air was independent of A12O3 content, but a significant improvement in the bending strength was achieved by the post-HIPing technique. The bending strength and the fracture toughness of the HIPed composites increased with increasing A12O3 content. Ionic conductivity of the composites was evaluated and the total, lattice, and grain boundary conductivities slightly decreased with increasing A12O3 content. The HIPed composites containing up to 20 vol.% A1203 appear to be suitable candidate materials as electrolyte for solid oxygen fuel cell.  相似文献   

3.
Grain growth in the two-phase (liquid + solid) region of Ni3Al reinforced with 0.8 vol.% Al2O3 participates synthesized by a spray atomization and co-injection technique was investigated. The grain growth of the as-sprayed and hot isostatically pressed (HIPed) materials in the two-phase region was found to be consistent with cube law kinetics, i.e., grain growth exponent was approximately 3. The activation energy for grain growth for the as-sprayed material was determined to be 308 ± 19 kJ mol−1 while that of the HIPed material was calculated to be 327 ± 23 kJ mol−1. The activation energy for grain growth was not a function of the amount of liquid phase or the composition of the liquid. Furthermore, the activation energy for grain growth was higher than that for diffusion through the liquid phase, suggesting that the mechanism for grain growth of the as-sprayed and HIPed Ni3Al composite in the two-phase region was controlled by an interface reaction. The role of the second-phase Al2O3 particles on grain growth for the as-sprayed and HIPed Ni3Al materials was not significant.  相似文献   

4.
Highly sinterable submicron Pb0.l Ca0.9La2S4(PCLS) powders were prepared by sulfidizing calcium and lanthanum alkoxides al 500°C under CS, atmosphere for 8 hours and then in pure H2S atmosphere at 600-800°C for 8 hours. After sintering the pellets were used as infrared transmitting window material of 8-14 μm wavelength. The CdS was added from 3 to 7 wt.% lo improve the sinterability by forming liquid phase during sintering. For sulfidization of lanthanum alkoxide, sulfide powder with LaS2 phase was formed at 500°C, and a pure Th3P4 phase formed follow by 700°C heat treatment. A powder with β-La2S3phase formed at 800°C, and a pure Th3 P4phase formed follow by 900°C heat treatment. The powder with β-La2S3 phase was sintered to full density at 1350°C by adding 3 wt.% CdS. The PCLS powder with Th3P4 phase sintered to full density at 1400°C by also adding 3 wt.% CdS. The pellet exhibited 45% transmittanceat 13 μm when sintered from the powder with p-La2S3phase. The transmittance at 2.5 μm for the pellet sintered from the PCLS powder with Th3P4 type structure was 3 times higher than that from the p-La2S3 powder.  相似文献   

5.
HfO2 thin films with columnar microstructure were deposited directly on ZnS substrates by electron beam evaporation process. SiO2 thin films, deposited by reactive magnetron sputtering, were used as buffer layers, HfO2 thin films of granular microstructure were obtained on SiO2 interlayer by this process. X-ray diffraction patterns demonstrate that the as-deposited HfO2 films are in an amorphous-like state with small amount of crystalline phase while the HfO2 films annealed at 450 °C in O2 for 30 min and in Ar for 150 min underwent a phase transformation from amorphous-like to monoclinic phase. Antireflection effect in certain infrared wave band, such as 3–6 μm, 4–12 μm, 4–8 μm and 3–10 μm, can be observed, which was dependent on the thickness of thin films. The cross-sectional images of HfO2 films, obtained by field emission scanning electron microscopy, revealed that there was no distinct morphological change upon annealing.  相似文献   

6.
Grain growth of nanocrystalline yttria-stabilized tetragonal zirconia polycrystals (Y-TZP) was studied between 1250 and 1650 °C and compared to the Y-TZP data from the literature. All the results exhibited two distinctly different behaviour, where slow and fast grain growth regimes with activation energies 280 and 546 kJ mol−1 prevail below and above 1400 °C, respectively. Analysis of the data with respect to the grain growth mechanisms and the diffusion kinetics was in agreement with limited Y3+ lattice diffusion within the cubic zirconia nano-grains below 1400 °C. This results in slow grain growth kinetics. Redistribution of Y3+ above 1400 °C together with the equilibrium phase assemblage lead to enhanced grain boundary diffusion of Y3+ and results in enhanced grain growth of the sub-micrometer tetragonal grains.  相似文献   

7.
By method of isothermal gravimetry at 600-700°C, CH4 concentration 32-100% in Ar and 91-100% in H2 under atmospheric pressure the kinetics of CH4 pyrolysis under Ni/La2O3 catalysts is studied. Estimated apparent activation energy of reaction is 73 kJ/mol for fresh catalyst and 71 kJ/mol for aged one. The reaction order on CH4 changes from 1.05 at 600°C to 1.3 at 700°C. The influence of H2 concentration on the reaction rate is more complicated. On the basis of kinetics measurements continuously working laboratory-scale reactor with gas and catalyst counter-flow is constructed and tested.  相似文献   

8.
MoSi2-based intermetallics containing different volume fractions of MoB or Mo5Si3 were fabricated by hot-pressing MoSi2, MoB, and Mo5Si3 powders in vacuum. Both classes of alloys contained approximately 5 vol.% of dispersed silica phase. Additions of MoB or Mo5Si3 caused the average grain size to decrease. The decrease in the grain size was typically accompanied by an increase in flexure strength, a decrease in the room temperature fracture toughness, and a decrease in the hot strength (compressive creep strength) measured around 1200 °C, except when the Mo5Si3 effectively became the major phase. Oxidation measurements on the two classes of alloys were carried out in air. Both classes of alloys were protected from oxidation by an in-situ adherent scale that formed on exposure to high temperature. The scale, although not analyzed in detail, is commonly recognized in MoSi2 containing materials as consisting mostly of SiO2. The MoB containing materials showed an increase in the scale thickness and the cyclic oxidation rate at 1400 °C when compared with pure MoSi2. However, in contrast with the pure MoSi2 material, oxidation at 1400 °C began with a weight loss followed by a weight gain and the formation of the protective silica layer. The Mo5Si3 containing materials experienced substantial initial weight losses followed by regions of small weight changes. Overall, the MoB and Mo5Si3 additions to MoSi2 tended to be detrimental for the mechanical and oxidative properties.  相似文献   

9.
For growth temperatures in the range of 275°C to 425°C, highly conductive RuO2 thin films with either (110)- or (101)-textured orientations have been grown by metal-organic chemical vapor deposition (MOCVD) on both SiO2/Si(001) and Pt/Ti/SiO2/Si(001) substrates. Both the growth temperature and growth rate were used to control the type and degree of orientational texture of the RuO2 films. In the upper part of this growth temperature range ( 350°C) and at a low growth rate (< 3.0 nm/min.), the RuO2 films favored a (110)-textured orientation. In contrast, at the lower part of this growth temperature range ( 300°C) and at a high growth rate (> 3.0 nm/min.), the RuO2 films favored a (101)-textured orientation. In contrast, higher growth temperatures (> 425°C) always produced randomly-oriented polycrystalline films. For either of these low-temperature growth processes, the films produced were crack-free, well-adhered to the substrates, and had smooth, specular surfaces. Atomic force microscopy showed that the films had a dense microstructure with an average grain size of 50–80 nm and a rms. surface roughness of 3–10 nm. Four-probe electrical transport measurements showed that the films were highly conductive with resistivities of 34–40 μΩ-cm (at 25°C).  相似文献   

10.
The deposition behavior of silicon in hot wire chemical vapor deposition was investigated, focusing on the generation of negatively charged species in the gas phase using a gas mixture of 20% SiH4 and 80% H2 at a 450 °C substrate temperature under a working pressure of 66.7 Pa. A negative current of 6–21 µA/cm2 was measured on the substrate at all processing conditions, and its absolute value increased with increasing wire temperature in the range of 1400 °C–1900 °C. The surface roughness of the films deposited on the silicon wafers increased with increasing wire temperature in the range of 1510 °C–1800 °C. The film growth rate on the positively biased substrates (+ 100 V, + 200 V) was higher than that on the neutral (0 V) and negatively biased substrates (− 100 V, − 200 V, − 300 V). These results indicate that the negatively charged species are generated in the gas phase and contribute to deposition. The surface roughness evolved during deposition was attributed to the electrostatic interaction between these negatively charged species and the negatively charged growing surface.  相似文献   

11.
TiB2 is a material with very interesting properties with respect to erosion and corrosion resistance. Deposition on metallic substrates using TiCI4, BBr3 or BCI3 and H2 at temperatures around 900° C results in coronation of the substrate, which is most severe when using BBr3. Therefore, a TiN diffusion barrier is applied. Here we discuss the deposition of TiB2 using BCI3 on molybdenum and TiN and compare the results with those of the thermodynamically more favorable reaction with BBr3. Smooth TiB2 layers are formed when using BCI3, with faceting occurring above 900° C. The morphology seems to be independent of the BCI3/TiCl4 ratio in the gas phase for values between 0·5 and 4. With an excess of boron in the gas phase - BCI3/TiCl4 = 8, depletion occurs already at 800° C. An apparent activation energy of 210 KJ/mol has been determined for a stoichiometric gas phase with BCl3/TiCI4 = 2. When the supply of boron is limiting - BCl3/TiCl4 = 0·5, the activation energy is 120 KJ/mol.  相似文献   

12.
The microwave dielectric properties and microstructures of Ba(Mg1/3Ta2/3)O3 (BMT) ceramics sintered at low temperatures with 2–3 wt.% NaF additives were investigated. BMT ceramics sintered at 1340 °C for 3–12 h showed dielectric constants (r) of 25.5–25.7, Qf values of 41 500–50 400 GHz and temperature coefficients of the resonator frequency (τf) of 10.9–21.4 ppm °C−1. The variation of sintering time almost had no effect on the dielectric constant. The Qf value increased and the τf decreased with increasing sintering time. The ordering degree of Mg2+ and Ta5+ at B-sites increased with increasing sintering time.  相似文献   

13.
制备了不同组分配比的氨丙基三乙氧基硅烷(KH550)-苯基三甲氧基硅烷(Z6124)复配偶联剂(KH550-Z6124)改性SiO2/聚四氟乙烯(PTFE)复合材料,系统地研究了KH550-Z6124组分配比对复合材料介电性能、吸水率和导热性能的影响。采用Lichtenecker模型计算了SiO2/PTFE复合材料的介电常数和介电损耗理论值,并与实验值进行对比。结果表明:当KH550、Z6124的含量(以SiO2的质量为基准)分别为0.3wt%和1.7wt%时,KH550-Z6124改性SiO2/PTFE复合材料的介电损耗由Z6124改性SiO2/PTFE复合材料的1.7×10-3降低至1.0×10-3,吸水率由0.082 6wt%降低至0.020 3wt%,导热率提高66%;SEM形貌分析发现KH550-Z6124改性SiO2颗粒在PTFE基体中均匀分散,界面连接更紧密;KH550-Z6124改性SiO2/PTFE复合材料的介电常数和介电损耗实验值更接近其理论值。  相似文献   

14.
向SiO2基体粉料中添加Al2O3纤维,采用热压注法制备Al2O3/SiO2陶瓷型芯。分析Al2O3纤维含量对陶瓷型芯性能的影响。研究结果表明:Al2O3纤维含量对Al2O3/SiO2陶瓷型芯的线收缩率、体积密度和抗弯强度均有较大的影响。当Al2O3纤维含量大于1wt%时,Al2O3/SiO2陶瓷型芯的线收缩率大幅度降低,稳定在0.335%左右,体积密度随之降低,稳定在1.790 g · cm-3左右;当Al2O3纤维含量为1wt%时,陶瓷型芯抗弯强度达最大值20.48 MPa。分析了Al2O3纤维对Al2O3/SiO2陶瓷型芯烧结收缩的阻滞作用机制。  相似文献   

15.
The microstructure, electrical properties, dielectric characteristics, and DC-accelerated aging behavior of the ZnO–V2O5–MnO2 system sintered were investigated for MnO2 content of 0.0–2.0 mol% by sintering at 900 °C. For all samples, the microstructure of the ZnO–V2O5–MnO2 system consisted of mainly ZnO grain and secondary phase Zn3(VO4)2. The incorporation of MnO2 to the ZnO–V2O5 system was found to restrict the abnormal grain growth of ZnO. The nonlinear properties and stability against DC-accelerated aging stress improved with the increase of MnO2 content. The ZnO–V2O5–MnO2 system added with MnO2 content of 2.0 mol% exhibited not only a high nonlinearity, in which the nonlinear coefficient is 27.2 and the leakage current density is 0.17 mA/cm2, but also a good stability, in which %ΔE1 mA = −0.6%, %Δ = −26.1%, and %Δtan δ = +22% for DC-accelerated aging stress of 0.85E1 mA/85 °C/24 h.  相似文献   

16.
Undoped and Pd-doped SnO2 films were deposited at various substrate temperatures and discharge gas pressures using reactive magnetron sputtering. Structural factors of the films, such as crystallite size, grain size, and film density, were systematically investigated. The main objectives of this study are to clarify the operation temperature dependence of the H2 sensitivity of these films as well as to clarify the dominant structural factor in the determination of the sensitivity. The operation temperature at which the sensitivity defined by (RaRg)/Rg, where Ra and Rg are the resistances before and after exposure to H2, showed a maximum decreased with decreasing film density. The highest sensitivity of 4470 was obtained for a Pd-doped film with the lowest density of 3.1 g/cm3 at 100 °C. It was found that the sensitivity correlated with film density rather than with crystallite size and grain size. The high sensitivity of a Pd-doped porous film at a low temperature was discussed in relation to the Schottky-barrier-limited transport as well as the chemical and electronic effects of Pd.  相似文献   

17.
The effect of CuO addition on the microstructures and the microwave dielectric properties of MgTa2O6 ceramics has been investigated. It is found that low level-doping of CuO (up to 1 wt.%) can significantly improve the density of the specimens and their microwave dielectric properties. Tremendous sintering temperature reduction can be achieved due to the liquid phase effect of CuO addition observed by scanning electronic microscopy (SEM). The sintered samples exhibit excellent microwave dielectric properties, which depend upon the liquid phase and the sintering temperature. With 0.5 wt.% CuO addition, MgTa2O6 ceramic can be sintered at 1400 °C and possesses a dielectric constant (r) of 28, a Q × f value of 58000 GHz and a temperature coefficient of resonant frequency (τf) of 18 ppm/°C.  相似文献   

18.
Ozonation of C60 in o-xylene produced three C60(O3)2 diozonides that were separated from one another and from two C60(O3)3 triozonides by High Performance Liquid Chromatography (HPLC). Upon thermolysis at 10, 15, and 16.6°C, each of the diozonides dissociated sequentially, first to a C60O(O3) oxyozonide, then to a C60O2 diepoxide. The three diepoxides were stable in solution for at least 3 weeks. The mean lifetimes of the three diozonides were 52 ± 5, 62 ± 6, and 17.3 ± 1.8 min, respectively (all at 15°C). The mean lifetimes of the three oxyozonides were 69.7 ± 0.7 and 58 ± 6 min at 16.6°C, respectively and about 240 min at 10°C. Photolysis of the diozonides yielded two dioxidoannulenes with UV-Vis adsorption maxima at 333 and 332 nm, and what appeared to be an epoxide-oxidoannulene with UV-Vis adsorption maximum at 327 nm. These annulenes were observed to form dimers. We have synthesized and characterized six C60O2 dioxides, at least three and possibly four of which were hitherto unknown. We report the discovery of oxyozonides that form during the dissociation of diozonides.  相似文献   

19.
为了探究光催化功能性聚丙烯(PP)纤维的可纺性及加工性能,首先以SiO2包覆改性纳米TiO2粒子(SiO2@TiO2)为添加剂,对PP进行共混改性。然后,用毛细管流变仪测试了SiO2@TiO2/PP共混熔体的拉伸流变性能,用XRD和DSC研究了SiO2@TiO2对PP性能的影响。结果表明:SiO2@TiO2/PP共混熔体属于拉伸变稀型流体。熔体的拉伸应力和拉伸黏度均随温度的升高而下降;拉伸黏度随添加剂用量的增加而增大,拉伸流动活化能随拉伸应变速率的提高而降低。SiO2@TiO2的加入不会明显改变PP的结晶结构,但会使结晶性能增强,当SiO2@TiO2的含量为4wt%时,共混熔体的结晶度比纯PP的高8.6%。SiO2@TiO2能使PP形成更为紧密的晶体结构,这对材料的性能具有重要影响。  相似文献   

20.
Homogeneous mixtures containing iron oxide and amorphous SiO2 were obtained through the co-deposition of these oxides via combustion chemical vapor deposition technique (CCVD). This technique allows the deposition of thin films with low-cost precursors and equipments. After deposition, the deposited samples were submitted to a heat treatment in an atmosphere composed of natural gas and H2 at 1000°C, in order to promote the growth of carbon nanotubes. Multiwalled carbon nanotubes, with diameters smaller than 15 nm, were obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号