首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Resilin is a member of the family of elastomeric proteins and is found in specialised regions of the cuticle of most insects, and provides low stiffness, high strain and efficient energy storage. It is best known for its role in insect flight and the remarkable jumping ability of fleas and spittle bugs. In common with other elastomeric proteins, the recently identified Drosophila melanogaster proresilin shows glycine‐rich repetitive sequences; in particular the N‐ and C‐terminal regions of the protein are dominated by 18 repeats of a 15‐residue sequence (SDTYGAPGGGNGGRP) and eleven repeats of a 13‐residue sequence (GYSGGRPGGQDLG), respectively. We synthesised and analysed the molecular and supramolecular structure of some polypeptides with sequences belonging to the glycine‐rich repeated domain of D. melanogaster resilin. The conformational studies performed by CD, FTIR and NMR spectroscopies pointed to the coexistence of two main conformational features, such as folded β‐turns and (quasi)extended structures (e.g., poly‐L ‐proline II conformation) in common with other elastomeric proteins; this suggests an elasticity mechanism for resilin common to other elastomeric proteins. Our data show that also in the case of resilin, repetitive sequences are characterised by autonomous structures almost independent of the remaining parts of the molecule as already extensively found for elastin. From a supramolecular point of view, a great tendency to aggregate in fibrous structures is observed, particularly for the resilin‐ inspired polypeptide (PGGGN)10. This is encouraging for the development of resilin‐based biomaterials for the production of biocompatible medical devices, as well as high performing elastic materials.  相似文献   

2.
A novel strategy for the highly selective purification of recombinant fusion proteins using negatively charged protein domains, which were constructed by protein design, is described. A triple alpha-helical domain of 58 amino acids was used as scaffold. Far-ultraviolet circular dichroism measurements showed that the designed domains had very low alpha-helicity in a low-conductivity environment in contrast to the scaffold. The secondary structure could be induced by adding salt, giving a structure comparable to the parental molecule. Further studies showed that the new domains were able to bind to an anion exchanger even at pH values down to 5 and 6. Gene fusions between one of the designed domains and different target proteins, such as green fluorescent protein (GFP), maltose binding protein (MBP) and firefly luciferase, were also constructed. These gene products could be efficiently purified from whole cell lysates at pH 6 using anion-exchange chromatography.  相似文献   

3.
A very efficient system for subcloning and studying proteinsequences, combining previously established elements for hyperexpression,replication and screening, was used to hyperproduce and characterizeseven different products. It expedited the cloning of genes,in a multipurpose recombinant DNA construct, for all the requirementsto study and engineer proteins with a strain of Escherichiacoli. Genes encoding six heme proteins and a flavoprotein havebeen subcloned and expressed to 13–30% of the total cellprotein, greatly facilitating purification and analyses. Threeof the heme proteins and the flavoprotein incorporated prostheticgroups in E.coli, and exhibited the expected activities. Fourof the enzymes have been purified to homogeneity and two ofthese crystallized for X-ray diffraction analysis. A rapid muta-genesisprotocol, based on polymerase chain reactions, was successfullyapplied to clone derivatives of one of these enzymes, cytochromec peroxidase. Thus, this system fulfills all criteria for engineeringproteins in an efficient and concerted manner.  相似文献   

4.
Combinatorial libraries of synthetic DNA are increasingly being used to identify and evolve proteins with novel folds and functions. An effective strategy for maximizing the diversity of these libraries relies on the assembly of large genes from smaller fragments of synthetic DNA. To optimize library assembly and screening, it is desirable to remove from the synthetic libraries any sequences that contain unintended frameshifts or stop codons. Although genetic selection systems can be used to accomplish this task, the tendency of individual segments to yield misfolded or aggregated products can decrease the effectiveness of these selections. Furthermore, individual protein domains may misfold when removed from their native context. We report the development and characterization of an in vivo system to preselect sequences that encode uninterrupted gene segments regardless of the foldedness of the encoded polypeptide. In this system, the inserted synthetic gene segment is separated from an intein/thymidylate synthase (TS) reporter domain by a polyasparagine linker, thereby permitting the TS reporter to fold and function independently of the folding and function of the segment-encoded polypeptide. TS-deficient Escherichia coli host cells survive on selective medium only if the insert is uninterrupted and in-frame, thereby allowing selection and amplification of desired sequences. We demonstrate that this system can be used as a highly effective preselection tool for the production of large, diverse and high-quality libraries of de novo protein sequences.  相似文献   

5.
We have designed and constructed a DNA sequence encoding humantissue plasminogen activator (tPA) with convenient restrictionsites that flank each of the domains of the heavy chain. Toaccomplish this, the first 1095 bases of the gene coding forthe mature protein were synthesized with unique restrictionsites engineered into the interdomainal regions. This syntheticconstruction was then ligated to a cDNA fragment of the tPAgene that encoded the active site, thus generating a full-lengthtPA gene. The gene products produced by Chinese hamster ovary(CHO) cells transfected with either the tPA cassette gene orthe tPA cDNA gene were then compared with the tPA produced byBowes melanoma cells to determine whether or not synthetic interdomainalamino acid changes had an effect on the biochemical characteristicsof the molecule. Specifically, molecular weight, specific activity,enhancement by fibrinogen fragments and kinetic constants wereanalysed. None of the properties examined were significantlydifferent from those of the native melanoma tPA. Therefore,the cassette gene described herein should provide considerableversatility and precision in the construction of tPA mutantsby facilitating the manipulation of the finger, growth factorand kringle domains, and likewise should be useful in assessingthe function of these domains within the tPA molecule. We presentthis cassette gene system as a model for the analysis of proteindomain function applicable to other multi-domain proteins.  相似文献   

6.
A gene encoding a bacterial IgG Fc binding domain was designedand synthesized. The synthetic DNA fragment was cloned 3' toan inducible trpE promoter such that expression of the genein Escherichia coli produced abundant Fc binding protein fusedto the first seven amino acids of the trpE protein. The recombinantprotein contained a single Fc binding domain and demonstratedefficient binding to'human IgG in Western blot analysis. Thisprotein degraded rapidly following cell lysis in the absenceof protease inhibitors, but could be effectively protected bythe addition of protease inhibitor. After purification of theprotein by IgG affinity chromatography, IgG Fc binding abilitywas retained for at least 24 h at either 23 or 37°C andon heating for 15 min at temperatures up to 65°C. No immunoprecipitationwas observed in interactions between the monodomain Fc bindingprotein and IgG molecules. Unlike staphylococcal protein A,no detectable binding of the monodomain IgG Fc binding proteinwas observed to either IgM or IgA. Truncated proteins, expressedfrom a series of 3' deletions of the synthetic gene, were usedto estimate the minimum portion of a monodomain Fc binding proteinthat retained Fc binding ability.  相似文献   

7.
Glycinin is one of the predominant storage proteins of soybean.To improve its functional properties (heat-induced gelationand emulsification) and/or nutritional value, the A1aB1b proglycininsubunit was modified on the basis of genetically variable domainssuggested from the comparison of amino acid sequences of glycinin-typeglobulins from various legumes and nonlegumes and the relationshipsbetween the structure and the functional properties of glycinin.Thus, nucleotide sequences corresponding to each of the variabledomains were deleted from the cDN A encoding the A1aB1b proglycinin,and a synthetic DNA encoding four continuous methionines wasinserted into the cDNA region corresponding to each of the variabledomains. Expression plasmids carrying the modified cDNAs wereconstructed and expressed in Escherichia coli strain JM105.Some of the modified proteins were accumulated as soluble proteinsin the cells at a high level and self-assembled. They exhibitedfunctional properties superior to those of the native glycininfrom soybean, which establishes the possibility of creatingtheoretically designed novel glycinins with high food qualities.  相似文献   

8.
Starting from a synthetic modular gene (infA*) encoding Escherichiacoli translation initiation factor IF1, we have constructedmutants in which amino acids are deleted from the carboxyl terminusor in which His29 or His34 are replaced by Tyr or Asp residues.The mutant proteins were overproduced, purified and tested invitro for their properties in several partial reactions of thetranslation initiation pathway and for their capacity to stimulateMS2 RNA-dependent protein synthesis. The results allow for theconclusion that: (i) Arg69 is part of the 30S ribosomal subunitbinding site of IF1 and its deletion results in the substantialloss of all IF1 functions; (ii) neither one of its two histidinesis essential for the binding of IF1 to the 30S ribosomal subunit,for the stimulation of fMet-tRNA binding to 30S or 70S ribosomalparticles or for MS2 RNA-dependent protein synthesis; but (iii)His29 is involved in the 50S subunit-induced ejection of IF1from the 30S ribosomal subunit.  相似文献   

9.
A gene coding for one of the IgG-binding domains of Staphylococcalprotein A, designated domain B, was chemically synthesized.This gene was tandemly repeated to give dimeric and tetramericdomain B genes by the use of two restriction enzymes which gaveblunt ends. The genes were highly expressed in Escherichia colito afford a large amount of dimeric and tetrameric domain Bproteins. The single domain B protein was efficiently producedas a fusion protein with a salmon growth hormone fragment. Thefusion protein was converted to monomeric domain B by cyanogenbromide cleavage. The CD spectra of the monomeric, dimeric andtetrameric domain B proteins were essentially the same as thatof native form protein A, showing that their secondary structureswere very similar. The dimeric and tetrameric domain B proteinsformed precipitates with IgG as protein A. This system permitsthe efficient production of mutated single and multiple IgG-bindingdomains which can be used to study structural changes and proteinA–immunoglobulin interactions.  相似文献   

10.
11.
Ribosome display of mammalian receptor domains   总被引:2,自引:0,他引:2  
Many mammalian receptor domains, among them a large number of potential therapeutic target proteins, are highly aggregation-prone upon heterologous expression in bacteria. This severely limits functional studies of such receptor domains and also their engineering towards improved properties. One of these proteins is the Nogoreceptor, which plays a central role in mediating the inhibition of axon growth and functional recovery after injury of the adult mammalian central nervous system. We show here that the ligand binding domain of the Nogoreceptor folds to an active conformation in ternary ribosomal complexes, as formed in ribosome display. In these complexes the receptor is still connected, via a C-terminal tether, to the peptidyl tRNA in the ribosome and the mRNA also stays connected. The ribosome prevents aggregation of the protein, which aggregates as soon as the release from the ribosome is triggered. In contrast, no active receptor was observed in phage display, where aggregation appears to prevent incorporation of the protein into the phage coat. This strategy sets the stage for rapidly studying defined mutations of such aggregation-prone receptors in vitro and to improve their properties by in vitro evolution using the ribosome display technology.  相似文献   

12.
A novel gene fusion system to express and purify small recombinantproteins in Escherichia coli has been constructed. The conceptallows for affinity purification of soluble gene products bysequential albumin- and Zn2+-affinity chromatography. The dual-affinitysystem is well suited for expression of unstable proteins asonly full-length protein is obtained after purification andproteins gain proteolytic stability in the fusion protein. Herewe show that the dual-affinity approach can be used for theexpression of various unstable derivatives of a single IgG-bindingdomain based on staphylococcal protein A. Analysis of the proteolyticstabilities and the IgG-binding properties of the differentmutant proteins suggest that the model for the structure ofan IgG-binding domain must be re-evaluated.  相似文献   

13.
Repetitive polypeptides, defined as a protein consisting primarily of tandemly repeated blocks of amino acid sequence, are widely used biomaterials. These repetitive polypeptides can be used in diverse biological fields including tissue engineering scaffolds, drug delivery systems, biomaterials, and DNA separation systems. The physical/chemical properties of the repetitive polypeptides can be improved by changing the composition of the repeated amino acid sequence. In this study, we introduced genetic methods for the production of repetitive polypeptides. By using recursive directional ligation (RDL) and controlled cloning method (CCM), multimerized genes were cloned and identified. Also, we compared the characteristics of recursive directional ligation (RDL) with those of controlled cloning method (CCM). This work was presented at 13 th YABEC symposium held at Seoul, Korea, October 20–22, 2007.  相似文献   

14.
The endoglucanase CenA and the exoglucanase Cex from Cellulomonasfimi each contain a discrete cellulose-binding domain (CBD),at the amino-terminus or carboxyl-terminus respectively. Thegene fragment encoding the CBD can be fused to the gene of aprotein of interest. Using this approach hybrid proteins canbe engineered which bind reversibly to cellulose and exhibitthe biological activity of the protein partner. Alkaline phosphatase(PhoA) from Escherichia coli, and a ß-glucosidase(Abg) from an Agrobacterium sp. are dimeric proteins. The fusionpolypeptides CenA-PhoA and Abg-CBCcex are sensitive to proteolysisat the junctions between the fusion partners. Proteolysis resultsin a mixture of homo- and heterodimers; these bind to celluloseif one or both of the monomers carry a CBD, e.g. CenA-PhoA/CenA-PhoAand CenA-PhoA/PhoA. CBD fusion polypeptides could be used inthis way to purify polypeptides which associate with the fusionpartner.  相似文献   

15.
Type I secretion system (TISS) of Gram-negative bacteria permits proteins to be secreted directly from the cytoplasm to the external medium by a single, energy-coupled step. To examine whether this system can be used as an extracellular production system of recombinant proteins, Escherichia coli alkaline phosphatase (AP) was fused to a C-terminal region of Pseudomonas sp. MIS38 lipase (PML) and examined for secretion using the E.coli cells carrying the heterologous TISS. PML is one of the passenger proteins of TISS and contains 12 repetitive sequences and a secretion signal at the C-terminal region. The fusion protein was efficiently secreted to the extracellular medium, while AP was not secreted at all, indicating that the secretion of AP is promoted by a secretion signal of PML. The repetitive sequences were not so important for secretion of the fusion protein, because the secretion level of the fusion protein containing entire repeats ( approximately 10 mg/l culture) was only 2-fold higher than that of the fusion protein without repeats. The fusion protein purified from the culture supernatant existed as a homodimer, like AP, and was indistinguishable from AP in enzymatic properties and stability.  相似文献   

16.
The expression of immunoglobulin heavy and light chain variableregions in the cytoplasm of Escherichia coli and formation ofa functional heterodimer has been demonstrated. Variable domainsequences were taken from the heavy and light chain cDNAs ofthe monoclonal antibody Gloop 2 and engineered for expressionin a dual origin expression vector. The engineered genes vhg2and vlg2 were separately subcloned into the vector, creatingtwo expression plasmids. Expression of the heavy and light chainvariable region genes (encoding 116 and 109 amino adds respectively)was investigated in eight E.coli strains; the polypeptides wererapidly degraded in a host strain optimized for expression andin E.coli strains deficient in the major protease La (lon-).Accumulation was permitted in severely protease-deficient E.colihaving a defective heat-shock response. A lon- mutation in thisgenetic background permitted even higher accumulation. Expressionlevels were 7 and 1% of total bacterial protein for light andheavy chain variable regions respectively. Expression of theheavy chain variable region gene was increased by includinga longer Shine–Dalgarno sequence. Similar constructionsin the light chain vector had no effect on expression levels.The insoluble variable region polypeptides were reconstitutedinto a heterodimer possessing the full antigen binding characteristicsof both the parent monoclonal antibody and its Fab fragment.  相似文献   

17.
18.
We repeatedly experienced difficulties in obtaining pure protein of a defined oligomeric state when expressing domains that consist partially or entirely of coiled coils. We therefore modified an established expression vector, pASK-IBA, to generate N- and C-terminal fusions of the cloned domain in heptad register with the GCN4 leucine zipper. GCN4 is a well-characterized coiled coil, for which stable dimeric, trimeric and tetrameric forms exist. To test this expression system, we produced a series of constructs derived from the trimeric autotransporter adhesin STM3691 of Salmonella (SadA), which has a highly repetitive structure punctuated by coiled-coil regions. The constructs begin and end with predicted coiled-coil segments of SadA, each fused in the correct heptad register to the trimeric form of GCN4, GCN4pII. All constructs were expressed at high levels, trimerized either natively or after refolding from inclusion bodies, and yielded crystals that diffracted to high resolution. Thus, fusion to GCN4pII allows for the efficient expression and crystallization of proteins containing trimeric coiled coils. The structure of short constructs can be solved conveniently by molecular replacement using the known GCN4 structure as a search model. The system can be adapted for constructs with dimeric or tetrameric coiled coils, using the corresponding GCN4 variants.  相似文献   

19.
The role of domains in defining the equilibrium and kinetic folding properties of dihydrofolate reductase (DHFR) from Escherichia coli was probed by examining the thermodynamic and kinetic properties of a set of variants in which the chain connectivity in the discontinuous loop domain (DLD) and the adenosine-binding domain (ABD) was altered by permutation. To test the concept that chain cleavage can selectively destabilize the domain in which the N- and C-termini are resident, permutations were introduced at one position within the ABD, one within the DLD and one at a boundary between the domains. The results demonstrated that a continuous ABD is required for a stable thermal intermediate and a continuous DLD is required for a stable urea intermediate. The permutation at the domain interface had both a thermal and urea intermediate. Strikingly, the observable kinetic folding responses of all three permuted proteins were very similar to the wild-type protein. These results demonstrate a crucial role for stable domains in defining the energy surface for the equilibrium folding reaction of DHFR. If domain connectivity affects the kinetic mechanism, the effects must occur in the sub-millisecond time range.  相似文献   

20.
Both freezing tolerance and NaCI tolerance are improved whenantifreeze proteins are expressed as fusion proteins with twodomains of staphylococcal protein A (SPA) in Escherichia coli.To characterize these properties further we created a randomlymutated expression library in E.coli, based on the winter flounderantifreeze protein HPLC-8 component gene. Low-fidelity PCR productsof this gene were fused to the spa gene encoding two domainsof the SPA. The library was screened for enhanced NaCl toleranceand four clones were selected. The freezing tolerance of eachof the selected clones was enhanced to varying extents. DNAsequencing of the isolated mutants revealed that the amphiphilicproperties of the native antifreeze protein were essentiallyconserved. Furthermore, by studying the primary sequence ofthe randomly mutated clones, in comparison with the degree offreezing tolerance, we have identified clues which help in understandingthe relationship between salt and freezing tolerance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号