首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The static failure behaviour of the fibre-metal laminate GLARE is examined using 3D finite element simulations. The configuration analysed is a centre-cracked tensile specimen composed of two aluminium layers sandwiching a cross-plied, fibre-epoxy layer. The crack and delamination growths are simulated by means of interface elements equipped with a mixed-mode damage model. The mode-mixity is derived from an energy criterion typically used in linear elastic fracture mechanics studies. The damage kinetic law is rate-dependent, in order to simulate rate effects during interfacial delamination and to avoid numerical convergence problems due to crack bifurcations. The numerical implementation of the interface damage model is based on a backward Euler approach. In the boundary value problem studied, the failure responses of GLARE specimens containing elastic aluminium layers and elasto-plastic aluminium layers are compared. The development of plastic deformations in the aluminium layers stabilizes the effective failure response, and increases the residual strength of the laminate. For a ‘quasi-brittle’ GLARE specimen with elastic aluminium layers, the residual strength is governed by the toughness for interfacial delamination, and is in close correspondence with the residual strength obtained from a closed-form expression derived from energy considerations. Conversely, for a ‘ductile’ GLARE specimen with elasto-plastic aluminium layers, the residual strength is also determined by the relation between the fracture strength and the yield strength of the aluminium. The amount of constraint by the horizontal displacements at the vertical specimen edges has a moderate to small influence on the residual strength. Furthermore, the ultimate laminate strength is lower for a larger initial crack length, and shows to be in good correspondence with experimental values.  相似文献   

2.
对GLARE36/5层板进行挤压性能试验研究,采用超声C扫描、断口微距拍摄和扫描电子显微镜等方法观测GLARE层板挤压渐进损伤过程和最终破坏模式。结果表明:GLARE层板挤压起始损伤为铝合金塑性变形;损伤扩展阶段,0°纤维主要承受挤压正应力,铝合金塑性变形增大,铺层间分层起始并扩展;0°纤维屈曲折断后层内纤维基体损伤和分层损伤急剧扩展,层板最终发生挤压破坏。将GLARE层板挤压失效分为层内失效和层间失效,采用应变描述的Hashin准则和界面单元方法并引入金属塑性建立GLARE层板挤压渐进损伤数值模型,数值模型对层板损伤起始位置、分层产生位置、损伤演化过程、最终破坏模式及破坏载荷进行了预测,计算结果与试验结果吻合较好,说明该计算方法能够有效模拟GLARE层板挤压渐进损伤性能。   相似文献   

3.
Fibre metal laminates (FMLs), such as glass reinforced aluminium (GLARE), are a family of materials with excellent damage tolerance and impact resistance properties. This paper presents an evaluation of the low velocity impact behaviour and the post-impact fatigue behaviour of GLARE laminate adhesively bonded to a high strength aluminium alloy substrate as a fatigue crack retarder. The damage initiation, damage progression and failure modes under impact and fatigue loading were examined and characterised using an ultrasonic phased array C-scan together with metallography and scanning electron microscopy (SEM). After impact on the substrate, internal damage to the GLARE bonded on the opposite side of the substrate occurred in the form of fibre and matrix cracking. No delamination was detected at the GLARE/substrate bond. Before impact the bonded GLARE strap caused reductions in substrate fatigue crack growth rate of up to a factor of 5. After impact the retardation was a factor of 2. The results are discussed in terms of changes to the GLARE stiffness promoted by the impact damage.  相似文献   

4.
The methods of numerical simulation and test are combined to analyze the impact behavior of glass fiber reinforced aluminum alloy laminate (GLARE). A new failure criteria is proposed to obtain the impact failure of GLARE, and combined with material progressive damage method by writing code of LS-DYNA. Low velocity impact test of GLARE is employed to validate the feasibility of the finite element model established. The simulation results have been shown that progressive damage finite element model established is reliable. Through the application of the finite element model established, the delamination of GLARE evolution progress is simulated, various failure modes of GLARE during impact are obtained, and the effects of stacking sequence and impactor diameter on the impact damage of GLARE are obtained.  相似文献   

5.
Crack closure in fibre metal laminates   总被引:1,自引:0,他引:1  
GLARE is a fibre metal laminate (FML) built up of alternating layers of S2-glass/FM94 prepreg and aluminium 2024-T3. The excellent fatigue behaviour of GLARE can be described with a recently published analytical prediction model. This model is based on linear elastic fracture mechanics and the assumption that a similar stress state in the aluminium layers of GLARE and monolithic aluminium result in the same crack growth behaviour. It therefore describes the crack growth with an effective stress intensity factor (SIF) range at the crack tip in the aluminium layers, including the effect of internal residual stress as result of curing and the stiffness differences between the individual layers. In that model, an empirical relation is used to calculate the effective SIF range, which had been determined without sufficiently investigating the effect of crack closure. This paper presents the research performed on crack closure in GLARE. It is assumed that crack closure in FMLs is determined by the actual stress cycles in the metal layers and that it can be described with the available relations for monolithic aluminium published in the literature. Fatigue crack growth experiments have been performed on GLARE specimens in which crack growth rates and crack opening stresses have been recorded. The prediction model incorporating the crack closure relation for aluminium 2024-T3 obtained from the literature has been validated with the test results. It is concluded that crack growth in GLARE can be correlated with the effective SIF range at the crack tip in the aluminium layers, if it is determined with the crack closure relation for aluminium 2024-T3 based on actual stresses in the aluminium layers.  相似文献   

6.
GLARE is a new aerospace structural material composed of alternating, bonded layers of aluminium alloy and glass fibre reinforced plastic. The results of an experimental study are presented here concerning mechanical fatigue testing of GLARE structural specimens in conditions relevant to the acoustic fatigue problem.

Endurance testing of 35 GLARE Tee-coupons under simulated random acoustic loading has been carried out and resonance frequency, damping loss factor, and strain response of the specimens have been experimentally determined. CFRP specimens have also been tested to provide a benchmark against which to compare the properties of GLARE. FE analysis of the coupons has also been carried out to support the experimental work and the theoretical results have been compared with the experimental data.

Damage mechanisms have been observed and fatigue data established. Using these experimental data, surface strain versus number of cycles to failure curves have been established. In particular, this work has assessed the behaviour of GLARE in bending and has highlighted the importance of the lay-up sequence for the “fibre bridging effect” on crack propagation to be effective.  相似文献   


7.
GLARE (GLAss-fiber REinforced aluminum) is a sandwich material that combines thin aluminum sheets with intermediate layers of glass fiber that are bonded using epoxy. Due to the resulting low specific weight and high strength as well as superior deterioration resistance the material has found its application in aircraft structures. GLARE parts are typically manufactured using the so-called self-forming technique, which is a very expensive and labor-intensive manufacturing process. If it was feasible to form GLARE from flat stock material using conventional forming processes, substantial savings could be achieved. Several attempts to form GLARE from flat stock reported in the literature are restricted by the limited formability of the glass fibers and/or delamination of the layers. This work analyses the possibilities to form GLARE using shot peen forming (SPF), which is an established forming process, e.g. for the production of fuselage parts. It is shown that GLARE shows a similar deformation behavior as monolithic sheets under quasi-static indentation with single steel balls. The process limits are analyzed using SPF tests and lock-in thermography, which is a non-destructive testing procedure for the detection of delamination. A process window for shot peen forming of GLARE is established, and it is shown that curvature radii of less than 2500 mm can be accomplished with no evidence of failure, which is a typical curvature radius of fuselage components for the Airbus A380.  相似文献   

8.
陆希  孟光  李富才 《振动与冲击》2012,31(12):63-67
研究复杂工程结构的结构健康监测技术具有现实意义。使用基于Lamb波的仿真和实验方法,对“U”形截面的铝合金构件中的损伤检测问题进行了研究。建立了构件的三维有限元模型并实现了Lamb波传播过程的动态仿真;实验中使用锆钛酸铅压电晶片(PZT wafer)来激发和接收在构件中传播的Lamb波。借助于连续小波变换(CWT)和希尔伯特变换(HT)等方法对仿真和实验中采集到的Lamb波信号进行处理,从中提取了与损伤有关的时域特征,建立了损伤位置和损伤反射波包飞行时间(ToF)之间的定量关系。  相似文献   

9.
In this paper, fatigue crack growth and delamination behaviours of a new fibre metal laminate (FML) named as Al‐Li alloy laminate were tested under different single tensile overloads and compared with those of glass laminate aluminium reinforced epoxy. The results indicate that the crack growth rate of Al‐Li alloy laminate after overload applied can quickly get back to its original level when the crack grows outside of the overload plastic zone. The overload has no influence on the delamination shape and size of Al‐Li alloy laminate. These results are obviously different from those found in the present study for GLARE, in which the crack growth rate cannot recover after overload, even though the crack is far beyond the overload plastic zone. A kink nearby the location of overload applied was found in the obtained delamination shape. This study provides some new results for better understanding the damage tolerance mechanism of FMLs.  相似文献   

10.
ABSTRACT Fatigue crack growth of fibre reinforced metal laminates (FRMLs) under constant and variable amplitude loading was studied through analysis and experiments. The distribution of the bridging stress along the crackline in centre‐cracked tension (CCT) specimen of FRMLs was modelled numerically, and the main factors affecting the bridging stress were identified. A test method for determining the delamination growth rates in a modified double cracked lap shear (DCLS) specimen was presented. Two models, one being fatigue‐mechanism‐based and the other phenomenological, were developed for predicting the fatigue life under constant amplitude loading. The fatigue behaviour, including crack growth and delamination growth, of glass fibre reinforced aluminium laminates (GLARE) under constant amplitude loading following a single overload was investigated experimentally, and the mechanisms for the effect of a single overload on the crack growth rates and the delamination growth rates were identified. An equivalent closure model for predicting crack‐growth in FRMLs under variable amplitude loading and spectrum loading was presented. All the models presented in this paper were verified by applying to GLARE under constant amplitude loading and Mini‐transport aircraft wing structures (TWIST) load sequence. The predicted crack growth rates are in good agreement with test results.  相似文献   

11.
Selective modes of guided Lamb waves are generated in a laminated aluminum plate for damage detection using a broadband piezoelectric transducer structured with a rigid electrode. Appropriate excitation frequencies and modes for inspection are selected from theoretical and experimental dispersion curves. Dispersion curves are obtained experimentally by short time Fourier transform of the transient signals. Sensitivity of antisymmetric and symmetric modes for delamination detection are investigated. The antisymmetric mode is found to be more reliable for delamination detection. Unlike other studies, in which the attenuation of the propagating waves is related to the extent of the internal damage, in this investigation, the changes in the time-of-flight (TOF) of guided Lamb waves are related to the damage progression. The mode conversion phenomenon of Lamb waves during progressive delamination is investigated. Close matching between the theoretical and experimentally derived dispersion curves and TOF assures the reliability of the results presented here.  相似文献   

12.
Traditional machine countersinking practices create a knife‐edge condition in one or more of the outer aluminium layers in riveted GLARE joints. Press countersinking (dimpling) provides an alternative method of countersinking that prevents the formation of a knife‐edge; however, its application and potential benefits to fatigue performance in GLARE are not known. This paper investigates the dimple‐forming process and its application to GLARE, and the resulting benefits in fatigue crack‐initiation life in unfilled rivet holes. Initial results showed that the limited formability of GLARE complicates the dimpling process, but that dimpling shows promise as a method for increasing the crack‐initiation life of riveted GLARE joints.  相似文献   

13.
Numerical simulations based on finite element modelling are increasingly being developed to accurately evaluate the tensile properties of GLARE (GLAss fibre REinforced aluminium laminates). In this study, nonlinear tensile behaviour of GLARE Fibre Metal Laminates (FML) under in-plane loading conditions has been investigated. An appropriate finite element modelling approach has been developed to predict the stress–strain response and deformation behaviour of GLARE laminates using the ANSYS finite element package. The finite element model supports orthotropic material properties for glass/epoxy layer(s) and isotropic properties with the elastic–plastic behaviour for the aluminium layers. The adhesion between adjacent layers has been also properly simulated using cohesive zone modelling. An acceptable agreement was observed between the model predictions and experimental results available in the literature. The proposed model can be used to analyse GLARE laminates in structural applications such as mechanically fastened joints under different mechanical loading conditions.  相似文献   

14.
The damage tolerance of an aluminium roll-bonded laminate (ALH19) and a glass fibre reinforced laminate (GLARE) (both based on Al 2024-T3) has been studied. The composite laminates have been tested under 3-point bend and shear tests on the interfaces to analyze their fracture behaviour. During the bend tests different fracture mechanisms were activated for both laminates, which depend on the constituent materials and their interfaces. The high intrinsic toughness of the pure Al 1050 layers present in the aluminium roll-bonded laminate (ALH19), together with extrinsic toughening mechanisms such as crack bridging and interface delamination were responsible for the enhanced toughness of this composite laminate. On the other hand, crack deflection by debonding between the glass fibres and the plastic resin in GLARE was the main extrinsic toughening mechanism present in this composite laminate.  相似文献   

15.
何志全  周丽  孙虎 《工程力学》2014,31(7):250-256
该文提出了一种获取压电陶瓷(PZT)传感器间Lamb波传递阻抗的方法,以实现对板结构裂纹的无基准快速检测。该方法从两组并排的PZT元件间提取包含Lamb波转换模式的损伤特征信号,对特征信号进行分类并求出其传递阻抗,通过比较传递阻抗的能量差异来判断裂纹是否存在。首先通过有限元仿真研究了裂纹导致的Lamb波模式转换现象以及PZT极化特性对各模式之间相对相位的影响,分析了所提出的方法的可行性;进一步通过在铝板上的实验验证了该方法的有效性。研究表明该文所提出的方法无需选择最优的激励频率和采样时间即可实现对裂纹的快速检测,具有较强的鲁棒性和适用性。  相似文献   

16.
This study explores the feasibility of using a non-contact guided wave imaging system to detect hidden delamination in multi-layer composites. The study is conducted in two phases. In the first phase, Lamb waves are excited by a lead (Pb) Zirconate Titanate transducer (PZT) mounted on the surface of a composite plate, and the out-of-plane velocity field is measured using a one-dimensional (1D) scanning laser Doppler vibrometer (LDV). From the scanned time signals, wavefield images are constructed and processed to study the interaction of Lamb waves with delamination. The paper presents additional signal and image processing techniques used to highlight the defect in the scanned area. The techniques are demonstrated using experimental data collected from a 1.8 mm thick multi-layer composite. In the second phase, a completely non-contact system is described to excite and measure guided waves. A modulated continuous wave (CW) laser source in conjunction with a photodiode is used to wirelessly excite an attached PZT and the resulting waves are again sensed using the vibrometer. The non-contact system is used to excite and measure elastic waves in a composite channel test article. The elastic wave propagation image sequences are created from the non-contact excitation system.  相似文献   

17.
超声Lamb波是检测板状结构损伤的常用方法,然而碳纤维增强聚合物基复合材料(Carbon Fiber ReinforcedPlastics,CFRP)本身的各向异性会对Lamb波的损伤成像和定位造成很大的影响。且大多数检测方法均采用健康结构的检测信号作为参考信号,用差信号的方法来实现损伤成像,该过程容易受到待测结构和实验环境变化等外界因素的影响。针对该问题,采用时间反转和加权分布成像相结合的方法,将其应用在复合材料板状结构的Lamb波损伤检测和成像中。仿真结果表明,该方法能够有效地实现板中单源脱层损伤和多源脱层损伤的二维成像与定位,且具有较高的精度和准确性。  相似文献   

18.
The authors and Hitachi Cable, Ltd. have recently developed small-diameter optical fiber and its fiber Bragg grating (FBG) sensor for embedment inside a lamina of composite laminates without strength reduction. The outside diameters of the cladding and polyimide coating are 40 and 52 μm, respectively. First, a brief summary is presented for applications of small-diameter FBG sensors to damage monitoring in composite structures. Then, we propose a new damage detection system for quantitative evaluation of delamination length in CFRP laminates using Lamb wave sensing. In this system, a piezo-ceramic actuator generates Lamb waves in a CFRP laminate. After the waves propagate in the laminate, transmitted waves are received by an FBG sensor attached on or embedded in the laminate using a newly developed high-speed optical wavelength interrogation system. This system was applied to detect interlaminar delamination in CFRP cross-ply laminates. When the Lamb waves passed through the delamination, the amplitude decreased and a new wave mode appeared. These phenomena could be well simulated using a finite element analysis. From the changes in the amplitude ratio and the arrival time of the new mode depending on the delamination length, it was found that this system could evaluate the delamination length quantitatively. Furthermore, small-diameter FBG sensors were embedded in a double-lap type coupon specimen, and the debonding progress could be evaluated using the wavelet transform.  相似文献   

19.
变幅载荷下纤维金属层板的疲劳与寿命预测   总被引:4,自引:0,他引:4  
文章建立了纤维金属层板等幅疲劳载荷下的疲劳裂纹扩展速率与寿命预测模型。在此基础上对玻璃纤维-铝合金层板(GLARE)的疲劳裂纹扩展与分层扩展行为进行了试验研究,探讨了层板过载疲劳行为的机理,提出了纤维金属层板变幅载荷下疲劳寿命预测的等效裂纹闭合模型,并在GLARE层板上得到了验证。  相似文献   

20.
This paper describes a method to detect notch like damages in plates using piezoelectric transducers. The method does not use prior baseline data for damage detection. A single pair of piezoelectric wafer transducers made of Lead Zirconate Titanate (PZT) is attached back to back on the opposite sides of a plate and are used for simultaneous actuation and sensing. A notch, which is a sudden change in thickness of the plate, leads to mode conversion of Lamb waves. The mode converted wave component in the measured signal is then separated from the other Lamb wave mode components using polarization characteristics of the piezoelectric wafer transducers. The damage index is a function of the amplitude of this mode converted component of the signal. In real world situations, the damage index will not be exactly zero due to inaccuracy in transducer collocation and non-uniformity in their bonding conditions. Therefore, a (non-zero) threshold for the damage index needs to be established to avoid false alarms. True to the spirit of baseline-free damage detection, this threshold is computed from the signals acquired only from the current state of the structure. This is achieved by using redundancy in signal measurements. Since the method detects damages without having to rely on baseline data, environmental variations like temperature change do not affect its performance. Results from numerical simulations as well as experiments on aluminum specimens are provided to demonstrate the effectiveness of the method described above.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号