首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Antibacterial effects of American cranberry (Vaccinium macrocarpon) concentrate on foodborne pathogens, Escherichia coli O157:H7, Listeria monocytogenes, Salmonella Typhimurium, and Staphylococcus aureus in vitro were investigated. Cranberry concentrate at various concentrations was prepared in distilled water (DW) or Brain Heart Infusion (BHI) broth. Pathogens were inoculated in each sample and incubated at 21 and 4 °C for 0, 1, 5, 7, and 24 h (DW samples) and 0, 1, 3, and 5 days (BHI samples). Transmission electron microscopy (TEM) was used to study the effects of cranberry concentrate on cellular structure of pathogens. DW results showed that S. Typhimurium and L. monocytogenes were reduced to non-detectable levels at 5 h in 100 μl/ml treatment at 21 and 4 °C. At 24 h, no target pathogens were detected from the 100 μl/ml treatment. BHI data indicated that the 100 μl/ml treatment reduced the four pathogens by 3-8 log CFU/ml compared with the control on Day 5 at 21 and 4 °C. TEM revealed damage to the bacterial cell walls and membranes. Cranberry concentrate has antibacterial effects on the four foodborne pathogens. Based on potential health benefits and proven antimicrobial effects, American cranberry concentrate may have dual applications as a food preservative.  相似文献   

2.
Illnesses from Escherichia coli O157:H7, Listeria monocytogenes, and Salmonella have been associated with the consumption of numerous produce items. Little is known about the effect of consumer handling practices on the fate of these pathogens on celery. The objective of this study was to determine pathogen behavior at different temperatures under different storage conditions. Commercial fresh-cut celery was inoculated at ca. 3 log CFU/g onto either freshly cut or outer uncut surfaces and stored in either sealed polyethylene bags or closed containers. Samples were enumerated following storage for 0, 1, 3, 5, and 7 days when held at 4 °C or 12 °C, and after 0, 8, and 17 h, and 1, and 2 days when held at 22 °C. At 4 °C, all populations declined by 0.5–1.0 log CFU/g over 7 days. At 12 °C, E. coli O157:H7 and Salmonella populations did not change, while L. monocytogenes populations increased by ca. 0.5 log CFU/g over 7 days. At 22 °C, E. coli O157:H7, Salmonella, and L. monocytogenes populations increased by ca. 1, 2, or 0.3 log CFU/g, respectively, with the majority of growth occurring during the first 17 h. On occasion, populations on cut surfaces were significantly higher than those on uncut surfaces. Results indicate that populations are reduced under refrigeration, but survive and may grow at elevated temperatures.  相似文献   

3.
We investigated the effects of factors such as relative humidity (RH) and temperature on pathogen survival on apples with different surface conditions. Apples with different surface conditions (unblemished, bruised, or cut) were inoculated with three pathogens (Escherichia coli O157:H7, Salmonella Typhimurium, and Staphylococcus aureus) and stored at different RH levels (RH 100, 85, or 68%) at 4 °C or 15 °C for 2 days. S. aureus survived most readily on apple surfaces; it had no significant reduction on any of the apple surfaces for any of the three RH levels after 2 days of storage. The reduction levels of E. coli O157:H7 and S. Typhimurium on unblemished and bruised apple surfaces were higher at RH of 85% and 68% than at RH of 100% at 15 °C; and reduction levels were approximately 3 log10 CFU/apple at 4 °C in RH of 68%. No significant reduction in any of the three pathogens on cut apple surfaces was observed for any RH level. The effectiveness of chemical sanitizers (chlorine sanitizer and 2% lactic acid) in reducing pathogens (E. coli O157:H7, S. Typhimurium, and S. aureus) on apple surfaces (unblemished, bruised, or cut) was also evaluated. Treatment with chlorine sanitizer and 2% lactic acid for 5 min significantly reduced pathogen levels on unblemished and bruised apple surfaces but not on cut apple surfaces. In conclusion, the surface conditions of the apple significantly affected pathogen survival and the effectiveness of sanitizing methods.  相似文献   

4.
The single and combined effects of enterocin AS-48 and high hydrostatic pressure (HHP) on Listeria monocytogenes, Salmonellaenterica, and Staphylococcus aureus was investigated in fuet (a low acid fermented sausage) during ripening and storage at 7 °C or at room temperature. AS-48 (148 AU g−1) caused a drastic 5.5 log cfu g−1 decrease in L. monocytogenes (P < 0.001) and a significant (P < 0.01) inhibition (1.79 logs) for Salmonella at the end of ripening (10 d). After pressurization (400 MPa) and storage Listeria counts remained below 5 cfu g−1 in all fuets containing AS-48 (pressurized or not). HHP alone had no anti-Listeria effect. HHP treatment significantly reduced Salmonella counts, with lowest levels in pressurized fuets with AS-48. S. aureus showed similar growth for all treatments and storage conditions. These results indicate that AS-48 can be applied alone to control L. monocytogenes and combined with HHP treatment to control Salmonella in fuets.  相似文献   

5.
The influence of temperature and the presence of Nα-lauroyl ethylester (ethyl lauroyl arginate, LAE) on the inactivation caused by continuous pulsed electric field treatments (PEF) in Escherichia coli O157:H7 suspended in apple juice have been investigated to define treatment conditions applicable at industrial scale that promote an equivalent safety level when compared with thermal processing. In the range of experimental conditions investigated (outlet temperature: 20-40 °C, electric field strength: 20-30 kV, treatment time: 5-125 μs) at outlet temperatures equal or lower than 55 ± 1 °C, the inactivation of E. coli O157:H7 treated in apple juice ranged from 0.4 to 3.6 Log10 cycles reduction and treated in apple juice supplemented with LAE (50 ppm) ranged from 0.9 to 6.7 Log10 cycles reduction.An empirical mathematical model was developed to estimate the treatment time and total specific energy input to obtain 5 Log10 cycles reduction in the population of E. coli O157:H7 suspended in apple juice supplemented with 50 ppm of LAE at different electric field strengths and inlet temperatures. Treatment conditions established for E. coli O157:H7 were validated with other PEF resistant Gram-positive (Listeria monocytogenes, and Staphylococcus aureus) and Gram-negative (Salmonella enterica serovar Typhimurium) strains. When the treatment was applied to the apple juice, a treatment of 25 kV/cm for 63 μs corresponding with an outlet temperature of 65 °C and input energy of 125 kJ/kg was required to achieve more than 5 Log10 cycles in the four strains investigated. The addition of LAE reduced the treatment time required to obtain an equivalent inactivation (> 5 Log10 cycles) in the four microorganisms to 38.4 μs, the outlet temperature to 55 °C, and the input energy to 83.2 kJ/kg.  相似文献   

6.
Fresh produce can be a vehicle for the transmission of pathogens capable of causing human illnesses and some of them can grow on fresh-cut vegetables. The survival and growth of Escherichia coli O157:H7, Salmonella spp. and Listeria monocytogenes inoculated onto shredded lettuce was determined under modified atmosphere packaging conditions, at various storage temperatures. We also monitored changes in pH and gas atmospheres within the packages and the growth of psychrotrophic and mesophilic microorganisms. After pathogen inoculation, shredded lettuce was packaged in films of different permeability and stored at 5 and 25 °C. After 10 days at 5 °C populations of E. coli O157:H7 and Salmonella decreased approximately 1.00 log unit while L. monocytogenes increased about 1.00 log unit, in all package films. Moreover, the pathogens level increased between 2.44 and 4.19 log units after 3 days at 25 °C. Psychrotrophic and mesophilic bacteria had similar growth at both temperatures with higher populations in air than in the other atmospheres. The composition of the storage atmosphere within the packaging of lettuce had no significant effect on the survival and growth of the pathogens used in this study at refrigeration temperatures. The results obtained can be considered as a warning indicator, which reinforces the necessity for corrective measures to avoid contamination of vegetables.  相似文献   

7.
This study was performed to compare the effectiveness of individual treatments (ultrasound and organic acids) and their combination on reducing foodborne pathogens on organic fresh lettuce. Lettuce leaves were inoculated with a cocktail of three strains each of Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes and treated with ultrasound (40 kHz) alone, organic acids (0.3, 0.5, 0.7, 1.0, and 2.0% — malic acid, lactic acid, and citric acid) alone and combined with ultrasound and organic acids for 5 min. For all 3 pathogens, the combined treatment of ultrasound and organic acids resulted in additional 0.8 to 1.0 log reduction compared to individual treatments, without causing significant quality change (color and texture) on lettuce during 7 day storage. The maximum reductions of E. coli O157:H7, S. Typhimurium, and L. monocytogenes were 2.75, 3.18, and 2.87 log CFU/g observed after combined treatment with ultrasound and 2% organic acid for 5 min, respectively. Our results suggest that the combined treatment of ultrasound with organic acids was effective at increasing pathogen reduction compared to individual treatments without significantly affecting quality, and demonstrates its potential as a novel method to increase the microbial safety on organic fresh lettuce.  相似文献   

8.
In the present study, inhibitory effects of the hydrosols of thyme, black cumin, sage, rosemary and bay leaf were investigated against Salmonella Typhimurium and Escherichia coli O157:H7 inoculated to apple and carrots (at the ratio of 5.81 and 5.81 log cfu/g for S. Typhimurium, and 5.90 and 5.70 log cfu/g for E. coli O157:H7 on to apple and carrot, respectively). After the inoculation of S. Typhimurium or E. coli O157:H7, shredded apple and carrot samples were washed with the hydrosols and sterile tap water (as control) for 0, 20, 40 and 60 min. While the sterile tap water was ineffective in reducing (P > 0.05) S. Typhimurium and E. coli O157:H7, 20 min hydrosol treatment caused a significant (P < 0.05) reduction compared to the control group. On the other hand, thyme and rosemary hydrosol treatments for 20 min produced a reduction of 1.42 and 1.33 log cfu/g respectively in the E. coli O157:H7 population on apples. Additional reductions were not always observed with increasing treatment time. Moreover, thyme hydrosol showed the highest antibacterial effect on both S. Typhimurium and E. coli O157:H7 counts. Inhibitory effect of thyme hydrosol on S. Typhimurium was higher than that for E. coli O157:H7. Bay leaf hydrosol treatments for 60 min reduced significantly (P < 0.05) E. coli O157:H7 population on apple and carrot samples. In conclusion, it was shown that plant hydrosols, especially thyme hydrosol, could be used as a convenient sanitizing agent during the washing of fresh-cut fruits and vegetables.  相似文献   

9.
The objective of this study was to evaluate the effect of steam pasteurization on the inactivation of Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes biofilms on stainless steel and polyvinyl chloride (PVC). Biofilms were formed on a stainless steel and PVC coupon by using a mixture of three strains each of three foodborne pathogens. Six-day-old biofilms on stainless steel and PVC coupons were treated with steam at 75 and 85 °C for 5, 10, 20, 30, 40, and 50 s. Biofilm cells of E. coli O157:H7, S. Typhimurium, and L. monocytogenes on stainless steel were reduced by more than 6 log CFU/coupon after exposure to steam at 75 °C for 30, 40, and 30 s, respectively, and at 85 °C for 30, 20, and 20 s, respectively. Steam treatment resulted in less reduction in the levels of biofilm cells on PVC coupons. Biofilm cells of E. coli O157:H7, S. Typhimurium, and L. monocytogenes were reduced by 1.78, 2.04, and 1.29 log CFU/coupon, respectively, after 50 s of exposure to steam at 75 °C. Exposure to steam at 85° for 50 s reduced biofilm cells of E. coli O157:H7, S. Typhimurium, and L. monocytogenes by 2.53, 3.01, and 1.70 log CFU/coupon, respectively. The results of this study suggest that steam pasteurization has potential as a biofilm control method by the food industry.  相似文献   

10.
This study determined the efficacy of actinidin and papain on reducing Listeria monocytogenes and three mixed strains of Escherichia coli O157:H7 populations on beef. The average reduction of E. coli O157:H7 was greater than that of L. monocytogenes and higher concentrations of either protease yielded greater reduction in bacterial populations. For instance, actinidin at 700 mg/ml significantly (p ≤ 0.05) reduced the population of L. monocytogenes by 1.49 log cfu/ml meat rinse after 3 h at 25 & 35 °C, and by 1.45 log cfu/ml rinse after 24 h at 5 °C, while the same actinidin concentration significantly reduced the populations of three mixed strains of E. coli O157:H7 by 1.81 log cfu/ml rinse after 3 h at 25 & 35 °C, and 1.94 log cfu/ml rinse after 24 h at 5 °C. These findings suggest that, in addition to improving the sensory attributes of beef, proteolytic enzymes can enhance meat safety when stored at suitable temperatures.  相似文献   

11.
The effect of cabbage (Brassica oleracea) rhizosphere on survival of Escherichia coli O157:H7 and Salmonella Typhimurium in manure-amended soils under tropical field conditions was investigated in the Central Agro-Ecological Zone of Uganda. Three-week old cabbage seedlings were transplanted and cultivated for 120 days on manure-amended soil inoculated with 4 or 7 log CFU/g non-virulent E. coli O157:H7 and S. Typhimurium. Cabbage rhizosphere did not affect survival of the 4 log CFU/g inocula in manure-amended soil and the two enteric bacteria were not detected on/in cabbage leaves at harvest. The 7 log CFU/g E. coli O157:H7 and S. Typhimurium survived in bulk soil for a maximum of 80 and 96 days, respectively, but the organisms remained culturable in cabbage rhizosphere up to the time of harvest. At 7 log CFU/g inoculum, E. coli O157:H7 and S. Typhimurium contamination on cabbage leaves occurred throughout the cultivation period. Leaf surface sterilisation with 1% AgNO3 indicated that the organisms were present superficially and in protected locations on the leaves. These results demonstrate that under tropical field conditions, cabbage rhizosphere enhances the persistence of E. coli O157:H7 and S. Typhimurium in manure-amended soil at high inoculum density and is associated with long-term contamination of the leaves.  相似文献   

12.
The effect of pulsed electric fields (PEF) on the reduction of the population and on the occurrence of sublethal injury in five strains of two Gram-positive (Listeria monocytogenes and Staphylococcus aureus) and two Gram-negative (Escherichia coli and Salmonella Typhimurium) microorganisms was investigated in media of pH 4.0 and 7.0. Samples were subjected to 50 exponential waveform pulses of 15, 20, 25 and 30 kV/cm at a repetition rate of 1 Hz.PEF resistance and occurrence of sublethal injury depended on the electric field strength and pH of the treatment medium and varied widely among the 20 strains investigated. In general, the increment of the electric field strength from 20 to 30 kV/cm had a significant effect on the viability loss of all the strains. However this increment hardly affected the viability of E. coli W3110 and O157:H7 in the medium of pH 4.0 and of L. monocytogenes 4031, 5672 and 4032 in the medium of pH 7.0. At 30 kV/cm a population reduction higher than 4-Log10 cycles was observed in two strains of S. Typhimurium (878, 4594) and in three strains of S. aureus (976, 4465, 4466) in the medium of pH 4.0. In the medium of pH 7.0, this level of reduction was observed in two strains of E. coli (471, BJ4L1), in three strains of S. Typhimurium (443, 880, 722) and in three strains of S. aureus (976, 4465, 4466).In general, important sublethal injury was not observed for the strains of the two-Gram positive microorganisms in the media of pH 4.0 and 7.0 and for the strains of S. Typhimurium treated in the media of pH 7.0. For E. coli sublethal injury was detected for all the strains investigated, except the strain BJ4L1 treated at 30 kV/cm in the medium of pH 7.0.Industrial relevance. The identification of the most PEF resistant microorganisms of public health concern is necessary to establish the treatment conditions for PEF pasteurization. Data obtained in this investigation demonstrates that the PEF resistance and the occurrence of sublethal injury may vary greatly among different strains of a bacteria and both depend on the pH of the treatment medium. Therefore the most resistant microorganisms of public health significance can be expected to vary for different foods depending of their pH.  相似文献   

13.
Although chocolate is a microbiologically stable product it has been described as a vehicle for Salmonella spp. Because of the low water activity (aw) and the high fat content of chocolate Salmonella spp. shows an increased heat resistance, even during the thermal process of chocolate making. The aim of this study was to evaluate the thermal inactivation of Salmonella spp. during conching in various masses of chocolate and cocoa butter at different temperatures (50-90 °C). The effect of thermal treatment on Salmonella spp. was determined with the MPN (Most-Probable-Number) method. Results of thermal treatment showed approximate D-values for cocoa butter from D50°C = 245 min to D60°C = 306 min, for cocoa liquor from D50°C = 999 min to D90°C = 26 min and for dark chocolate of D50°C = 1574 min. z-values were found to be z = 20 °C in cocoa liquor and z = 14 °C in dark chocolate. This study demonstrates that the conching process alone does not ensure the inactivation of Salmonella spp. in different chocolate masses and that an additional decontamination step at the beginning of the process as well as an HACCP concept is necessary during chocolate production to guarantee the absence of Salmonella spp. in chocolates and related products.  相似文献   

14.
Anna Jofré  Narcís Grèbol 《LWT》2009,42(5):924-112
The food-borne pathogens Listeria monocytogenes, Salmonella enterica, Staphylococcus aureus, Yersinia enterocolitica and Campylobacter jejuni, and the spoilage lactic acid bacteria (LAB), Escherichia coli and the yeast Debaryomyces hansenii were inoculated on slices of cooked ham, dry cured ham and marinated beef loin. During storage at 4 °C, L. monocytogenes and LAB increased up to 3.5 log units while the other species, unable to grow under refrigeration, continued at the spiking level. The application of a 600 MPa treatment effectively inactivated most of the microorganisms, the counts of which, except for LAB that increased in cooked ham and in beef loin, progressively decreased or maintained below the detection limit during the whole storage (120 days at 4 °C).  相似文献   

15.
The antimicrobial properties of lowbush blueberry (Vaccinium angustifolium) were studied against Escherichia coli O157:H7, Listeria monocytogenes, Salmonella Typhimurium, and Lactobacillus rhamnosus to determine which fractional components have antimicrobial effects and which microorganisms are most susceptible to these antimicrobial properties. Lowbush blueberry extract (F1) was separated using a C-18 Sep-Pak cartridge into monomeric phenolics (F2) and anthocyanins plus proanthocyanidins (F3). Fraction 3 was further separated into anthocyanins (F4) and proanthocyanidins (F5) using a LH-20 Sephadex column. Each fraction was initially screened for antimicrobial properties using agar diffusion assay. Treatments that demonstrated inhibition were further analyzed for inhibition in liquid culture. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were determined using a two-fold dilution series and viable cell counts taken at 0 and 24 h to examine growth reduction. Fraction 3 demonstrated the lowest MICs/MBCs followed by F1, F2, F4, and F5. L. monocytogenes was the most susceptible to blueberry fraction treatment, followed by E. coli O157:H7, and S. Typhimurium. L. rhamnosus was the least susceptible to each fraction treatment. The results can be applied to the field of preventive medicine, food safety, and enrich the understanding of the health benefits of lowbush blueberries.  相似文献   

16.
The objective of this study was to validate the effectiveness of acetic and lactic acids (2% and 5%), acidified sodium chlorite (1000 ppm), and sterile water in reducing Escherichia coli O157:H7 and Salmonella Typhimurium in inoculated beef trim in a simulated processing environment. Samples were collected to assess microbial characteristics at three processing points. Results from this study indicate that all treatments, including sterile water, reduced pathogen concentrations (P < 0.05) of both E. coli O157:H7 and Salmonella Typhimurium in ground beef up to 0.5 and 0.6 log by 24 h, respectively. In some cases, there were no significant differences between the antimicrobial treatments and the sterile water using this application method. Triangle sensory test results of non-inoculated beef indicated there were no differences (P < 0.05) in the means of correct responses between controls or antimicrobial treatments at 6 or 24 h. While interventions are important for beef trim, use of the interventions must be validated under industry conditions to ensure proper effectiveness.  相似文献   

17.
Cheese contaminations with foodborne bacterial pathogens, and their health outbreaks, are serious worldwide problems that could happen from diverse sources during cheese production or storage. Plants, and their derivatives, were always regarded as the potential natural and safe antimicrobial alternatives for food preservation and improvement. The extracts from many plants, which are commonly used as spices and flavoring agents, were evaluated as antibacterial agents against serious foodborne pathogens, for example Listeria monocytogenes, Salmonella Typhimurium, Staphylococcus aureus, and Escherichia coli O157:H7, using qualitative and quantitative assaying methods. Dairy‐based media were also used for evaluating the practical application of plant extracts as antimicrobial agents. Most of the examined plant extracts exhibited remarkable antibacterial activity; the extracts of cinnamon, cloves, garden cress, and lemon grass were the most powerful, either in synthetic or in dairy‐based media. Flavoring processed cheese with plant extracts resulted in the enhancement of cheese sensory attributes, for example odor, taste, color, and overall quality, especially in flavored samples with cinnamon, lemon grass, and oregano. It can be concluded that plant extracts are strongly recommended, as powerful and safe antibacterial and flavoring agents, for the preservation and sensory enhancement of processed cheese.  相似文献   

18.
Certain foodborne diseases are associated with antibiotic resistance, a significant problem throughout the world. Silver nanoparticles (AgNPs) using industrial waste from Eucalyptus camaldulensis and sericin, a protein derived from Bombyx mori, were synthesised by a one-step approach. Spherical-shaped nanoparticles with the average size of 17.19 nm exhibited strong antioxidant activity. The minimum bactericidal concentrations against foodborne pathogens including Bacillus cereus, Listeria monocytogenes, Staphylococcus aureus, Escherichia coli O157:H7, Klebsiella pneumoniae, Salmonella Typhimurium, Shigella sonnei, Vibrio cholerae and Vibrio parahaemolyticus were between 2.96 and 11.83 µg/mL. Killing against L. monocytogenes and E. coli O157:H7 was observed within 4 h. Treatment with AgNPs at 0.25 – 0.5 × MIC significantly reduced biofilm production in all isolates (P < 0.05). AgNPs significantly impeded adhesion to and invasion of human epithelial Caco-2 cells by L. monocytogenes and E. coli O157:H7 (P < 0.05). Biocompatibility assessment of AgNPs with Caco-2 and human red blood cells demonstrated no toxic effects.  相似文献   

19.
The purpose of this research was to investigate the effect of temperature in the technology of production of Grana cheese against Escherichia coli O157:H7, Listeria monocytogenes, Salmonella Typhimurium, and Staphylococcus aureus. According to the technology of production, the cheese curds are cooked at 55°C and then cooled at room temperature (25°C). A curd-cooling model was developed to estimate the temperature variation across the curd during cooling, and the thermal stress was applied to the pathogens according to the model in model-scale productions of Grana cheese artificially contaminated with approximately 104 cfu/mL of the selected pathogens. According to the numerical results, the initial temperature inside the cheese is kept at almost the initial value (above 50°C) for at least 4 h during cooling, whereas the crust of the curd cools rapidly to 30°C in the first hour. The best case was that of the core of the cheese where the high temperature was able to efficiently eliminate the contaminating pathogens. Moreover, the worst case was where the external ring of the curd in which a more rapid cooling allowed bacterial survival. Therefore, the thermal stress in the technology of production of Grana cheese can be only partially effective in the control of the selected pathogens. However, the whole technology of production includes other hurdles that can affect the survival of the pathogens and that need to be taken into account as a whole to evaluate the safety of Grana Padano cheese.  相似文献   

20.
The effects of two non thermal disinfection processes, Ultraviolet light (UV 254 nm) and Ultrasound (US) on the inactivation of bacteria and color in two freshly cut produces (lettuce and strawberry) were investigated. The main scope of this work was to study the efficacy of UV and US on the decontamination of inoculated lettuce and strawberries with a cocktail of four bacteria, Escherichia coli, Listeria innocua, Salmonella Enteritidis and Staphylococcus aureus. Treatment of lettuce with UV reduced significantly the population of E. coli, L. innocua, S. Enteritidis and S. aureus by 1.75, 1.27, 1.39 and 1.21 log CFU/g, respectively. Furthermore, more than a 2-log CFU/g reduction of E. coli and S. Enteritidis was achieved with US. In strawberries, UV treatment reduced bacteria only by 1–1.4 log CFU/g. The maximum reductions of microorganisms, observed in strawberries after treatment with US, were 3.04, 2.41, 5.52 and 6.12 log CFU/g for E. coli, S. aureus, S. Enteritidis and L. innocua, respectively. Treatment with UV and US, for time periods (up to 45 min) did not significantly (p > 0.05) change the color of lettuce or strawberry. Treatment with UV and US reduced the numbers of selected inoculated bacteria on lettuce and strawberries, which could be good alternatives to other traditional and commonly used technologies such as chlorine and hydrogen peroxide solutions for fresh produce industry. These results suggest that UV and US might be promising, non-thermal and environmental friendly disinfection technologies for freshly cut produce.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号