首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
肖珍平  唐宏青 《兰化科技》1995,13(2):112-115
用有效能的概念对大型渣油制氨装置的冷冻系统进行了分析,探讨了可能的节能途径,并针对某渣油制氨装置冷冻系统的具体情况提出了改进工况。  相似文献   

2.
谢尔渣油制氨装置油改气工艺技术方案   总被引:2,自引:0,他引:2  
李少卿  亢万忠 《大氮肥》2000,23(3):197-199,205
通过对大型谢尔渣油制氨装置工艺流程的分析和研究,提出了谢尔渣油制氨装置原料改用天然气的技术改造方案。  相似文献   

3.
8.53MPa渣油制氨装置面临的新问题及讨论   总被引:1,自引:0,他引:1  
虎希柏  褚衍来 《大氮肥》1997,20(1):50-53
就8.53MPa渣油制氨装置中目前存在的主要问题进行了分析和讨论,并在此基础上对一些问题提出解决措施。  相似文献   

4.
蒋先楚 《大氮肥》1995,18(3):204-207,223
针对洞庭氮肥厂拟建第二套大化肥的具体情况,对渣油制氨联产甲醇的工艺路线作了详细的论述,为增加大型渣油制氨厂的经济效益,提出了一些建设性的意见。  相似文献   

5.
从工业使用和经济角度,阐述了国产QCS-01钴钼系耐硫变换催化剂在德士古渣油制氨装置一段变换炉上的工业应用,并取得了理想的使用和经济效果。  相似文献   

6.
介绍了该技术在我厂以渣油为原料制氨工艺的应用,通过实际应用表明:该技术不仅适用于渣油制氨含氰污水的处理,还适合于其它含氰和县浮物的污水处理。  相似文献   

7.
以渣油为原料大型制氨装置技术经济评价   总被引:1,自引:1,他引:0  
本文介绍几咱以渣油为原料大型制氨流程的技术经济分析和新技术进展,供新建大化肥制氨装置参考,  相似文献   

8.
对谢尔渣油制氨装置采用天然气进行原料路线改造时可能的技术进行了探讨,重点对换热式转化工艺和非催化部分氧化工艺进行了比较说明,确定了在谢尔渣油制氨装置气代油的改造中宜采用非催化部分氧化工艺。  相似文献   

9.
胡立群 《大氮肥》1995,18(6):425-429
论述大型渣油制氨一氧化碳变换和氨合成催化剂的应用,探讨九江大化肥合成氨装置的催化剂选型。  相似文献   

10.
汤卫林  钱均 《大氮肥》1999,22(6):402-404
从使用和经济角度,阐述国产QCS-01钴钼系耐硫变换催化剂在德古渣油制氨一段变换炉上的工业应用,并取得了理想的使用和经济效果。  相似文献   

11.
This article presents a novel, systematic, and robust procedure for driver and power plant selection based on mathematical programming. The discrete nature of gas turbines is considered as gas turbine drivers and gas turbine‐based power plants are selected from a group of candidates. Plant availability with considering parallel compression has also been included, which allows a more comprehensive exploitation of the trade‐offs between capital costs, operating costs, and availability. When neglecting process heating and any steam equipment, the formulation can be applied to heavily power dominated processes, such as LNG. However, a more comprehensive formulation, allowing waste heat recovery and the integration with a multilevel steam system, is also proposed to produce more thermally efficient systems. This approach proved to be flexible and robust and is the first in producing solutions ranging from no‐steam to all‐steam systems, including all‐gas turbine, all‐motor and hybrid gas turbine/motor/steam systems. © 2010 American Institute of Chemical Engineers AIChE J, 2010  相似文献   

12.
利用现生产重油制氨的1000m~3(V_n)(O_2)/h空分,建设天然气并联换热蒸汽转化串纯氧部分氧化制甲醇和氨两用合成气,成为4万吨/年甲醇联产2.5万吨/年氨的生产单元组合,既节能节气、降低投资和生产消耗及成本,又充分利用现有设备发挥生产能力,同时还可增加产品和产量。  相似文献   

13.
介绍云天化红磷分公司功热电联产的运用情况。利用硫酸、合成氨装置副产中压蒸汽供汽轮机驱动硫酸风机,供抽凝式汽轮发电机发电,抽汽满足低压蒸汽热用户,热电联产热效率高达85%以上。并对提高装置热效率的其他方法、功热电联产的经济效益进行了讨论。  相似文献   

14.
热电联产及其燃气轮机蒸汽联合循环   总被引:1,自引:0,他引:1  
陈本刚 《化肥设计》2004,42(6):55-57
阐述了各种热电联产及燃气轮机蒸汽联合循环的形式、适用燃料及效率,介绍了燃气轮机联合循环发电及供热在我国合成氨厂的应用,指出燃气-蒸汽联合循环热电联产将是热电联产的发展方向。  相似文献   

15.
本文提出将高压比燃气轮机发电用于天然气换热转化大型合成氨厂工艺流程,使天然气换热转化合成氨厂不用输入电力、相反向外输出电力。而且,由于燃气轮机与合成氨工艺流程紧凑,即减少设备台数,简化工艺流程,又可多回收工艺余热,减少冷却水消耗。  相似文献   

16.
针对余热回收和能源利用的问题,以液化天然气(LNG)作为冷源,稠油开采废气作为热源,提出了一种结合天然气液化和废气发电与CO2捕集的余热回收利用系统。分析了关键热力学参数对系统热力学性能的影响。结果表明:对于有机朗肯循环和制冷循环,增加透平膨胀机的进口温度,降低其出口压力以及减少制冷循环压缩机进出口的压缩比,可获得最大净输出功为454.9 kW,余热回收效率为34.2%。对于天然气液化系统,采用C++进行非线性约束优化计算,以氮膨胀制冷循环压缩机总功耗为目标函数进行优化,得到压缩机最优总功耗为101.54 kW。降低天然气压缩机(K110)进口温度,氮气膨胀机(T3)出口压力以及氮气质量流量,可获得最大LNG调峰量为378.8 kg/h,反之,CO2捕集量可提高28.6%。  相似文献   

17.
吴廷娟 《广东化工》2010,37(8):50-52
广西河池化工股份有限公司采用造气吹风气余热集中回收技术回收制取合成氨原料气产生的造气吹风气潜热,并回收氨合成系统产生的解析气,生产高压过热蒸汽,用于热电联产,平衡合成氨、尿素生产系统蒸汽供给,不仅降低合成氨生产成本,还能实现废气回收,减少粉尘和有害气体对大气的污染,实现环境综合治理,能源综合利用,清洁生产,提高公司的经济效益和社会效益。  相似文献   

18.
Wen Cao  Danxing Zheng   《Fuel》2007,86(17-18):2864-2870
This paper proposes a novel power cycle system composed of chemical recuperative cycle with CO2–NG (natural gas) reforming and an ammonia absorption refrigeration cycle. In which, the heat is recovered from the turbine exhaust to drive CO2–NG reformer firstly, and then lower temperature heat from the turbine exhaust is provided with the ammonia absorption refrigeration system to generate chilled media, which is used to cool the turbine inlet gas except export. In this paper, a detailed thermodynamic analysis is carried out to reveal the performance of the proposed cycle and the influence of key parameters on performance is discussed. Based on 1 kg s−1 of methane feedstock and the turbine inlet temperature of 1573 K, the simulation results shown that the optimized net power generation efficiency of the cycle rises up to 49.6% on the low-heating value and the exergy efficiency 47.9%, the new cycle system reached the net electric-power production 24.799 MW, the export chilled load 0.609 MW and 2.743 kg s−1 liquid CO2 was captured, achieved the goal of CO2 and NOx zero-emission.  相似文献   

19.
何婷  林文胜 《化工学报》2021,72(Z1):453-460
沼气以及CO2驱采油的伴生气中都含有大量的CO2。为降低高含CO2天然气液化的能耗,提出了活化甲基二乙醇胺(MDEA)法脱除CO2的天然气液化系统,将液化厂中驱动压缩机的燃气轮机烟气余热用于吸收剂的再生过程,实现能耗的降低。采用HYSYS软件对系统进行了模拟研究并对脱碳过程的关键参数进行了分析。结果表明,CO2含量不超过10%时,脱碳再生的热耗可全部由烟气余热提供,CO2含量为30%时,烟气余热可提供接近50%的再生热耗;CO2含量为1%~30%时,系统的比功耗为0.577~0.611 kW·h/kg。  相似文献   

20.
Solid oxide fuel cell–gas turbine (SOFC‐GT) systems provide a thermodynamically high efficiency alternative for power generation from biofuels. In this study biofuels namely methane, ethanol, methanol, hydrogen, and ammonia are evaluated exergetically with respect to their performance at system level and in system components like heat exchangers, fuel cell, gas turbine, combustor, compressor, and the stack. Further, the fuel cell losses are investigated in detail with respect to their dependence on operating parameters such as fuel utilization, Nernst voltage, etc. as well as fuel specific parameters like heat effects. It is found that the heat effects play a major role in setting up the flows in the system and hence, power levels attained in individual components. The per pass fuel utilization dictates the efficiency of the fuel cell itself, but the system efficiency is not entirely dependent on fuel cell efficiency alone, but depends on the split between the fuel cell and gas turbine powers which in turn depends highly on the nature of the fuel and its chemistry. Counter intuitively it is found that with recycle, the fuel cell efficiency of methane is less than that of hydrogen but the system efficiency of methane is higher.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号