首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 539 毫秒
1.
Cats fed a diet containing linoleate as the only polyunsaturated fatty acid showed extremely low levels of arachidonate in the plasma lipids, as well as an increase in linoleate, eicosadienoate and an unknown fatty acid. Administration of [1-14C] linoleic acid and [2-14C] eicosa-8,11,14-trienoic acid to cats showed that in the liver there was no conversion of the [1-14C] 18∶2 to arachidonate, whereas there was significant metabolism of [2-14C] 20∶3 to arachidonate. It was found when methyl-γ-linolenate was fed to cats that the level of 20∶3ω6 and 20∶4ω6 in the erythrocytes increased significantly. These results show that there is no significant Δ6 desaturase activity in the cat, whereas chain elongation and Δ5 desaturase enzymes are operative. The unknown fatty acid was isolated from the liver lipids and shown to be a 20-carbon fatty acid with 3 double bonds and which by gas liquid chromatography could be separated from 20∶3ω9 and 20∶3ω6. The presence of the Δ5-desaturase activity and the results of the ozonolysis studies indicated that this unknown fatty acid was eicosa-5,11,14-trienoic acid.  相似文献   

2.
The incorporation of [1-14C]linoleic acid, and [1-14C]linoleic acid into cellular lipids of cultured human skin fibroblasts was studied. Cultured cells took up both labeled fatty acids at nearly the same rate and incorporated them into a variety of lipid classes. At the end of 1 hr incubation with [1-14C]linoleic acid, radioactivity was found in the triacylglycerol (TG) and choline phosphoglyceride (CPG) pools preferentially. Incorporation into the TG fraction decreased rapidly, while the uptake into CPG, serine phosphoglyceride (SPG), and ethanolamine phosphoglyceride (EPG) fractions increased progressively with longer incubation times. Similar results were obtained with [1-14C]linoleic acid as precursor. At the end of 24 hr, desaturation and chain elongation of 18∶3 n−3 was more extensive than conversion of 18∶2 n−6 to higher polyenoic acids. During pulse-chase experiments with either fatty acid precursor, the incorporated radioactivity was progressively lost from cellular lipids, particularly from the TG and CPG fractions, but continued to increase in the SPG and EPG pools. The similar labeling pattern of cellular phospholipids with linoleic or linolenic acids, and data from pulse-chase studies suggest that a direct transfer of fatty acids from CPG to EPG is a likely pathway in fibroblast cultures. Incorporation into the EPG pool during the pulse-chase experiments paralleled extensive desaturation and elongation of linoleic acid into 20∶4 n−6, and 22∶4 n−6; and of linolenic acid into 22∶5 n−3 and 22∶6 n−3.  相似文献   

3.
Chen Q  Yin FQ  Sprecher H 《Lipids》2000,35(8):871-879
Several experimental approaches were used to determine whether rat liver and testes express an acyl-CoA-dependent δ8 desaturase. When [1-14C]5, 11, 14-eicosatrienoic acid was injected via the tail vein, or directly into testes, it was incorporated into liver and testes phospholipids, but it was not metabolized to other labeled fatty acids. When [1-14C]11, 14-eicosadienoic acid was injected, via the tail vein or directly into testes, or incubated with microsomes from both tissues, it was only metabolized to 5,11, 14-eicosatrienoic acid. When ethyl 5,5,11,11,14,14-d6-5,11,14-eicosatrienoate was fed to rats maintained on a diet devoid of fat, it primarily replaced esteri-fied 5,8,11-eicosatrienoic acid, but not arachidonic acid. No labeled linoleate or arachidonate were detected. Dietary ethyl linoleate and ethyl 19,19,20,20-d4-1,2-13C-11,14-eicosadienoate were about equally effective as precursors of esterified arachidonate. The doubly labeled 11,14-eicosadienoate was metabolized primarily by conversion to 17,17,18,18-d4-9,12-ocatdeca-dienoic acid, followed by its conversion to yield esterified arachidonate, with a mass four units greater than endogenous arachidonate. In addition, the doubly labeled substrate gave rise to a small amount of arachidonate, six mass units greater than endogenous arachidonate. No evidence was obtained, with the radiolabeled substrates, for the presence of a δ8 desaturase. However, the presence of an ion, six mass units greater than endogenous arachidonate when doubly labeled 11, 14-eicosa-dienoate was fed, suggests that a small amount of the substrate may have been metabolized by the sequential use of δ8 and δ5 desaturases.  相似文献   

4.
In a previous study we showed that intestinal uptake of α-linolenic acid (18∶3n−3) was carrier-mediated and we suggested that a plasma membrane fatty acid protein was involved in the transport of long-chain fatty acids. To further test this hypothesis, the mechanism of linoleic acid (18∶2n−6) uptake by isolated intestinal cells was examined using a rapid filtration method and 20 mM sodium taurocholate as solubilizing agent. Under these experimental conditions transport of [1-14C]linoleic acid monomers in the concentration range of 2 to 2220 nM was saturable with a Vm of 5.1±0.6 nmol/mg protein/min and a Km of 183±7 nM. Experiments carried out in the presence of metabolic inhibitors, such as 2,4-dinitrophenol and antimycin A, suggested that an active, carriermediated mechanism was involved in the intestinal uptake of this essential fatty acid. The addition of excess unlabeled linoleic acid to the incubation medium led to a 89% decrease in the uptake of [1-14C]linoleic acid, whiled-glucose did not compete for transport into the cell. Other long-chain polyunsaturated fatty acids added to the incubation mixture inhibited linoleic acid uptake by more than 80%. The presence of α-linolenic acid (18∶3n−3) in the incubation medium caused the competitive inhibition (Ki=353 nM) of linoleic acid uptake. The data are compatible with the hypothesis that intestinal uptake of both linoleic, and α-linolenic acid is mediated by a membrane carrier common to long-chain fatty acids.  相似文献   

5.
M. Mahfouz  T. Smith  F. A. Kummerow 《Lipids》1995,30(11):977-985
The aim of this study was to investigate the effect of the oxysterol 5α-cholestane-3β, 5, 6β-triol (triol) on the metabolism of linoleic acid (18∶2n−6) to arachidonic acid (20∶4n−6) and on the cell membrane fatty acid composition. Porcine kidney cells were incubated in medium with or without 10 μg/mL of triol for 24 h, then incubated for 1, 6, or 12 h in a medium which contained 50 μM of either [14C]linoleic acid or unlabeled linoleic acid. The cellular uptake of [14C] linoleic acid was significantly higher in the triol-treated cells than in control cells. After 1- and 6-h incubations despite the increase of [14C]linoleic acid pool size in the triol-treated cells, neither total n−6 polyunsaturated fatty acids (PUFA) metabolites nor arachidonic acid were increased in the triol-treated cells as compared to the control cells, but trienoic acids accumulated to a greater extent in the triol-treated cells. Therefore, the ratios of n−6 PUFA metabolites vs. pool size of linoleic acid and of tetraenoic acids vs. dienoic acids were significantly decreased in triol-treated cells as compared to the control cells. The cellular fatty acid composition also showed that linoleic acid percentage was significantly increased while arachidonic acid percentage was significantly decreased in the triol-treated cells, and that the accumulation of trienoic acids (18∶3n−6+20∶3n−6) observed from the [14C]linoleic acid experiment was due solely to increased 20∶3n−6 content. This latter finding indicates that a decrease of elongase activity by triol is unlikely. Our results also showed that the triol-treated cells had a lower level of free cholesterol but higher levels of phospholipid and triol in their membranes, suggesting that triol displaced free cholesterol from the cell membrane.  相似文献   

6.
Agonist-stimulated phospholipases release arachidonate, but not 8,11,14-eicosatrienoate, from human endothelial cells. One source of the arachidonic acid is deacylation of 1-alkyl-2-arachidonoyl-glycerophosphocholine, with subsequent conversion of some of the resultant lysophospholipid to platelet-activating factor. This study has compared the distribution of incorporated 8,11,14-[14C]-eicosatrienoate in alkylacyl-GPC and diacyl-GPC with that of [14C]arachidonate synthesized endogenously by desaturation of the 8,11,14-[14C]eicosatrienoate. Cells were incubated for 24 or 48 hr with 8,11,14-[14C]eicosatrienoate, and the resultant mixture of14C-fatty acids in the cellular lipids was characterized by gas chromatography. The choline phospholipids were then separated, hydrolyzed with phospholipase C and derivatized to diradylbenzoates. Gas chromatographic analysis indicated extensive incorporation of [14C]eicosatrienoate, as well as [14C]arachidonate, into alkylacyl-GPC. Although the ratio of esterified [14C]arachidonate to [14C]eicosatrienoate was greater in alkylacyl-GPC than in diacyl-GPC, the enrichment with [14C]arachidonate was far less than the ratio of arachidonate/eicosatrienoate released from these cells. These results thus support the hypothesis that the acyl specificity of polyunsaturated fatty acid release is provided by the agonist-stimulated phospholipase A2 rather than the composition of the alkylacyl-GPC.  相似文献   

7.
The differential uptake and targeting of intravenously infused [1-14C]palmitic ([1-14C] 16∶0) and [1-14C]arachidonic ([1-14C]20∶4n−6) acids into heart lipid pools were determined in awake adult male rats. The fatty acid tracers were infused (170 μCi/kg) through the femoral vein at a constant rate of 0.4 mL/min over 5 min. At 10 min postinfusion, the rats were killed using pentobarbital. The hearts were rapidly removed, washed free of exogenous blood, and frozen in dry ice. Arterial blood was withdrawn over the course of the experiment to determine plasma radiotracer levels. Lipids were extracted from heart tissue using a two-phase system, and total radioactivity was measured in the nonvolatile aqueous and organic fractions. Both fatty acid tracers had similar plasma curves, but were differentially distributed into heart lipid compartments. The extent of [1-14C]20∶4n−6 esterification into heart phospholipids, primarily choline glycerophospholipids, was elevated 3.5-fold compared to [1-14C]16∶0. The unilateral incorporation coefficient, k *, which represents tissue radioactivity divided by the integrated plasma radioactivity for heart phospholipid, was sevenfold greater for [1-14C]20∶4n−6 than for [1-14C]16∶0. In contrast, [1-14C]16∶0 was esterified mainly into heart neutral lipids, primarily triacylglycerols (TG), and was also found in the nonvolatile aqueous compartment. Thus, in rat heart, [1-14C]20∶4n−6 was primarily targeted for esterification into phospholipids, while [1-14C]16∶0 was targeted for esterification into TG or metabolized into nonvolatile aqueous components.  相似文献   

8.
Coniglio  J. G.  Sharp  J. 《Lipids》1989,24(1):84-85
The conversion of [14C]linoleate to [14C]arachidonate by rat Sertoli cells was established by use of primary cultures. Most of the14C from [1-14C]linoleate was located in C-3 of the synthesized arachidonate, indicating that the labeled tetraene had originated largely by elongation and desaturation of the intact labeled substrate rather than by mere addition of14C-acetate generated by bio-oxidation of the radioactive substrate to an already existing 18-carbon precursor. Although a relatively small amount of14C was present in 18∶3ω6 and a relatively large amount of14C was present in 20∶2, it was not possible from these data to establish the relative importance of 20∶2 in the biosynthesis of arachidonic acid in rat Sertoli cells.  相似文献   

9.
Dauglas R. Tocher 《Lipids》1993,28(4):267-272
The origin of docosahexaenoic acid (DHA, 22∶6n−3) that accumulates in turbot brain during development was investigated by studying the incorporation and metabolismvia the desaturase/elongase pathways of [1-14C]-labelled polyunsaturated fatty acids (PUFA) in primary cultures of brain astrocytic glial cells. There was little specificity evident in the total incorporation of PUFAs into the turbot astrocytes. However, specificity was apparent in the distribution of the various PUFAs among the individual lipid classes. In particular, there was very specific incorporation of [14C]arachidonic acid (AA, 20∶4n−6) into phosphatidylinositol balanced by a lower incorporation of this acid into total diradyl glycerophosphocholines. [14C]-Linolenic acid (LNA, 18∶3n−3) and [14C]eicosapentaenoic acid (EPA, 20∶5n−3) were metabolizedvia the desaturase/elongase pathways to a significantly greater extent than [14C]linoleic acid (18∶2n−6) and [14C]AA. The turbot astrocytes expressed very little Δ5 desaturase activity and only low levels of Δ4 desaturation activity. Although the percentages were small, approximately 4–5 times as much labelled DHA was produced from [14C]EPA compared with [14C]LNA. However, it was concluded that very little DHA in the turbot brain could result from the metabolism of LNA and EPA in astrocytic glial cells.  相似文献   

10.
Harmon SD  Kaduce TL  Manuel TD  Spector AA 《Lipids》2003,38(4):469-476
The objective of this study was to determine the effect of 2,2-diphenyl-5-(4-{[(1E)-pyridin-3-yl-methylidene]-amino}piperazin-1-yl)pentanenitrile (SC-26196), a Δ6-desaturase inhibitor, on PUFA metabolism in human cells. SC-26196 inhibited the desaturation of 2 μM [1-14C] 18∶2n−6 by 87–95% in cultured human skin fibroblasts, coronary artery smooth muscle cells, and astrocytes. By contrast, SC-26196 did not affect the conversion of [1-14C]20∶3n−6 to 20∶4 in the fibroblasts, demonstrating that it is selective for Δ6-desaturase. The IC50 values for inhibition of the desaturation of 2 μM [1-14C] 18∶3n−3 and [3-14C]24∶5n−3 in the fibroblasts, 0.2–0.4 μM, were similar to those for the inhibition of [1-14C] 18∶2n−6 desaturation, and the rates of recovery of [1-14C] 18∶2n−6 and [3-14C] 24∶5n−3 desaturation after removal of SC-26196 from the culture medium also were similar. SC-26196 reduced the conversion of [3-14C] 22∶5n−3 and [3-14C] 24∶5n−3 to DHA by 75 and 84%, respectively, but it had no effect on the retroconversion of [3-14C] 24∶6n−3 to DHA. These results demonstrate that SC-26196 effectively inhibits the desaturation of 18- and 24-carbon PUFA and, therefore, decreases the synthesis of arachidonic acid, EPA, and DHA in human cells. Furthermore, they provide additional evidence that the conversion of 22∶5n−3 to DHA involves Δ6-desaturation.  相似文献   

11.
Delta-6 and Δ5 desaturation activity of rat adrenal gland microsomes was studied to determine the effect of microsomal protein and the substrate saturation curves. This tissue has a very active Δ6 desaturase for linoleic and α-linoleic acids and a Δ5 desaturase for eicosa-8,11,14-trienoic acid. The administration of epinephrine (1 mg/kg body weight) 12 hr before killing, produced approximately a 50% decrease in desaturation of [1-14C]linoleic acid to γ-linolenic acid, [1-14C]α-linolenic acid to octadeca-6,9,12,15-tetraenoic acid and [1-14C]eicosa-8,11,14-trienoic acid to arachidonic acid. A 30% decrease in Δ5 desaturation activity was also shown after 7 hr of epinephrine treatment. The changes on the oxidative desaturation of the same fatty acids in liver microsomes were similar. No changes were observed in the total fatty acid composition of adrenal microsomes 12 hr after epinephrine treatment. Mechanisms of action of the hormone on the biosynthesis of polyunsaturated fatty acids in the adrenal gland are discussed.  相似文献   

12.
Norflurazon is a herbicide known to inhibit carotene biosynthesis and linolenic acid biosynthesis in plants. In the present work, the effect of norflurazon on the metabolism of essential fatty acids was studied in isolated rat liver cells and in rat liver microsomes, incubated with [1-14C] labeled linolenic acid (18∶3, n−3), dihomogammalinolenic acid (20∶3, n−6) and eicosapentaenoic acid (20∶5, n−3). Norflurazon (0.1 mM, 1.0 mM) was found to inhibit essential fatty acid desaturation. The Δ6 desaturation is inhibited more efficiently than the Δ5 and Δ4 desaturation. The chain elongation of essential C18 fatty acids to their C20 and C22 homoglogs was not inhibited by norflurazon.  相似文献   

13.
The fate of [1-14C] linoleic acid and [1-14C] linolenic acid in the liver slices and also in the liver tissues of live carnivorous catfish,Heteropneustes fossilis andClarias batrachus, was studied. Incorporation of the fatty acids into different lipid classes in the live fish differed greatly from the tissue slices, indicating certain physiological control operative in vivo. The extent of desaturation and chain elongation of linoleic and linolenic acids into long-chain polyunsaturated fatty acids was low. Linolenic acid was oxidized (thus labeling the saturated fatty acid with liberated14C-acetyl-CoA) in preference to linoleic acid, and this oxidation also seemed to be under physiological control since both of the fatty acids were poorly oxidized in the tissue slices and in the killed fish. These fish can therefore recognize the difference in the acyl chain structures of linoleate and linolenate. The higher oxidation of liolenic acid and poor capacity for its conversion to longer chain, highly unsaturated derivatives indicates a higher demand for the dietary supply of these essential fatty acids in these two species.  相似文献   

14.
R. R. Brenner 《Lipids》1969,4(6):621-623
Variable concentrations of [I14C] linoleic acid and [I14C] eicosa-8,11,14-trienoic acid were incubated with liver microsomes in a medium containing the necessary cofactors for fatty acid desaturation. The conversion of linoleic into γ-linolenic acid and eicosatrienoic into arachidonic acid were mutually inhibited and the inhibition depended on the concentration of the fatty acids incubated.  相似文献   

15.
Liver slices, from mice fasted for one day and then refed for three days either a 15% corn oil diet or a 15% corn oil diet containing eicosa-5,8,11,14-tetraynoic acid (TYA), were incubated with [1-14C] acetate or [3H]H2O to determine lipogenic capacity. Dietary TYA produced a twofold stimulation in fatty acid and cholesterol synthesis. TYA also caused an increase in the relative proportion of linoleate (C18∶2) and a decrease in that of arachidonate (C20∶4) in liver. Thus, (a) despite high levels of C18∶2, hepatic lipogenesis can be increased, and (b) even short term feeding of TYA can alter the hepatic fatty acid composition presumably by inhibition of arachidonate synthesis from linoleate.  相似文献   

16.
Kumar D. Mukherjee 《Lipids》1986,21(5):347-352
Lipids in developing seeds ofSinapis alba contain appreciable proportions of (n−7)octadecenoic (vaccenic) acid besides its (n−9) isomer (oleic acid), whereas the constituent very long chain (>C18) monounsaturated fatty acids of these lipids are overwhelmingly composed of the (n−9) isomers. Cotyledons of developingSinapis alba seed use [1-14C]acetate, [1-14C]malonate or [1,3-14C]malonyl-CoA for de novo synthesis of palmitic, stearic and oleic acids and for elongation of preformed oleic, vaccenic and stearic acids to their higher (n−9), (n−7) and saturated homologs, respectively. Moreover, elongation of preformed (n−7)palmitoleic acid to vaccenic acid is observed. Stepwise C2-additions to preformed oleoyl-CoA by acetyl-CoA or malonyl-CoA yielding (n−9)icosenoyl-CoA, (n−9)docosenoyl-CoA and (n−9)tetracosenoyl-CoA are by far the most predominant reactions catalyzed by the elongase system, which seems to have a preference for oleoyl-CoA over vaccenoyl-CoA as the primer. The pattern of14C-labeling of the very long chain fatty acids formed from either acetate or malonate shows a close analogy in the mode of elongation of monounsaturated and saturated fatty acids.  相似文献   

17.
Marine fish have an absolute dietary requirement for C20 and C22 highly unsaturated fatty acids. Previous studies using cultured cell lines indicated that underlying this requirement in marine fish was either a deficiency in fatty acyl Δ5 desaturase or C18–20 elongase activity. Recent research in turbot cells found low C18–20 elongase but high Δ5 desaturase activity. In the present study, the fatty acid desaturase/elongase pathway was investigated in a cell line (SAF-1) from another carnivorous marine fish, sea bream. The metabolic conversions of a range of radiolabeled polyunsaturated fatty acids that comprised the direct substrates for Δ6 desaturase ([1-14C]18∶2n−6 and [1-14C]18∶3n−3), C18–20 elongase ([U-14C]18∶4n−3), Δ5 desaturase ([1-14C]20∶3n−6 and [1-14C]20∶5n−3), and C20–22 elongase ([1-14C]20∶4n−6 and [1-14C]20∶5n−3) were utilized. The results showed that fatty acyl Δ6 desaturase in SAF-1 cells was highly active and that C18–20 elongase and C20–22 elongase activities were substantial. A deficiency in the desaturation/elongation pathway was clearly identified at the level of the fatty acyl Δ5 desaturase, which was very low, particularly with 20∶4n−3 as substrate. In comparison, the apparent activities of Δ6 desaturase, C18–20 elongase, and C20–22 elongase were approximately 94-, 27-, and 16-fold greater than that for Δ5 desaturase toward their respective n−3 polyunsaturated fatty acid substrates. The evidence obtained in the SAF-1 cell line is consistent with the dietary requirement for C20 and C22 highly unsaturated fatty acids in the marine fish the sea bream, being primarily due to a deficiency in fatty acid Δ5 desaturase activity.  相似文献   

18.
S. C. Cunnane  K. W. J. Wahle 《Lipids》1981,16(10):771-774
The effect of zinc deficiency on the Δ6-desaturation of [1-14C] linoleic acid was studied in mammary tissue microsomes from lactating rats. The rats were maintained on zinc-adequate (20 ppm zinc) or zinc-deficient (10 ppm zinc changing to 0.5 ppm zinc during last trimester) diets throughout gestation and for the first 3 days of lactation. Mammary tissue microsomes were incubated with [1-14C] linoleic acid and other samples of mammary tissue, mammary milk and the milk in the stomachs of the pups were analyzed for total fatty acid composition. In mammary microsomes from zinc-deficient rats, Δ6-desaturation of linoleic acid was 3.4 times greater than in microsomes from zinc-adequate rats. This change in metabolism of linoleic acid was reflected by comparable changes in the relative tissue and milk composition of linoleic and arachidonic acids and in the ratios of palmitic to palmitoleic acid, stearic to oleic acid and linoleic and arachidonic acid.  相似文献   

19.
Which cell type is responsible for the high levels of very long chain polyunsaturated fatty acids in testis and whether this fatty acid pattern is a result of a local synthesis are not presently known. In this study, fatty acid conversion from 20∶4n−6 to 22∶5n−6 and from 20∶5n−3 to 22∶6n−3 was investigated in isolated rat germ cells incubated with [1-14C]-labeled fatty acids. The germ cells elongated the fatty acids from 20- to 22-carbon atoms and from 22- to 24-carbon atoms but had a low Δ6 desaturation activity. Thus, little [14C]22∶5n−6 and [14C]22∶6n−3 were synthesized. When Sertoli cells were incubated with [1-14C]20∶5n−3 for 24 h, an active fatty acid elongation and desaturation were observed. In vivo germ cells normally have a higher content of 22∶5n−6 or 22∶6n−3 than Sertoli cells. An eventual transport of essential fatty acids from Sertoli cells to germ cells was thus studied. Different co-culture systems were used in which germ cells were on one side of a filter and Sertoli cells on the opposite side. When isolated pachytene spermatocytes or round spermatids were added to the opposite side of a semipermeable filter, approximately 1 nmol [14C]-22∶6n−3 crossed the filter. Little of this was esterified in the germ cells. Similarly, in using [1-14C]20∶4n−6 in identical experiments, very little [14C]22∶5n−6 was esterified in germ cells on the opposite side of the filter. Although the very active synthesis of 22∶5n−6 and 22∶6n−3 observed in Sertoli cells suggests a transport of these compounds to germ cells, this was not experimentally determined.  相似文献   

20.
Guinea pig alveolar macrophages were labeled by incubation with either arachidonate or linoleate. Arachidonate labeled phosphatidylcholine (PC), phosphatidylethanolamine (PE) and triglycerides (TG) equally well, with each lipid containing about 30% of total cellular radioactivity. In comparison to arachidonate, linoleate was recovered significantly less in PE (7%) and more in TG (47%). To investigate whether redistributions of acyl chains among lipid classes took place, the macrophages were incubated with 1-acyl-2-[1-14C]arachidonoyl PC or 1-acyl-2-[1-14C]linoleoyl PC. After harvesting, the cells incubated with 1-acyl-2-[1-14C]linoleoyl PC contained 86% of the recovered cellular radioactivity in PC, with only small amounts of label being transferred to PE and TG (3 and 6%, respectively). More extensive redistributions were observed with arachidonate-labeled PC. In this case, only 60% of cellular radioactivity was still associated with PC, while 22 and 12%, respectively, had been transferred to PE and TG. Arachidonate transfer from PC to PE was unaffected by an excess of free arachidonate which inhibited this transfer to TG for over 90%, indicating that different mechanisms or arachidonoyl CoA pools were involved in the transfer of arachidonate from PC to PE and TG. Cells prelabeled with 1-acyl-2-[1-14C]arachidonoyl PC released14C-label into the medium upon further incubation. This release was slightly stimulated by zymosan and threefold higher in the presence of the Ca2+-ionophore A23187. Labeling of macrophages with intact phospholipid molecules appears to be a suitable method for studying acyl chain redistribution and release reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号