首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

We address the problem of shaping the intensity distribution of a highly directional partially coherent field, such as an excimer laser beam, by means of diffractive optics. Our theoretical analysis is based on modelling the multi-transverse-mode laser beam as a Gaussian Schell-model beam. It is shown numerically that a periodic element, which is unsuitable for the shaping of a coherent laser beam, works well with an excimer laser beam because of its partial spatial coherence. The conversion of an approximately Gaussian excimer laser beam into a flat-top beam in the Fourier plane of a lens is demonstrated with a diffractive beam shaper fabricated as a multilevel profile in SiOl by electron-beam lithography and proportional reactive-ion etching.  相似文献   

2.
Jia J  Zhou C  Sun X  Liu L 《Applied optics》2004,43(10):2112-2117
The superresolution technique is well known for its ability to compress the central diffractive spot that is smaller than the Airy diffractive spot. In this paper, we extend the superresolution technique for different laser beam shaping. A complete set of superresolution diffractive elements is developed for the flat-top beam shaping, the single-circle beam shaping, and the novel circular Dammann grating. Five phase plates, corresponding to each of its applications, have been made by use of micro-optics technology. Experiments that are presented are in good agreement with the theoretical results. The superresolution technique presented in this paper should be highly interesting for the wide applications of laser beam shaping.  相似文献   

3.
Techniques that recover images from diffraction data obtained using coherent short-wavelength light sources are currently under active development for applications in nanotechnology and structural biology. In this review, an outline of paraxial optics is provided in a form that is sufficiently general to incorporate the coherence properties and frequency structure of illumination sources used in diffractive imaging applications. The Fourier phase problem is formulated in the context of imaging algorithms that are designed to obtain uniquely-determined phase distributions from measurements of diffraction data. The properties of several iterative phase retrieval algorithms for both coherent and partially-coherent diffractive imaging applications are presented in a unified formalism, together with a brief discussion of a non-iterative technique. Approaches to diffractive imaging based on Fraunhofer and Fresnel diffraction configurations are compared. Applications are described utilising quasi-monochromatic third-generation synchrotron X-ray sources and polychromatic high-harmonic generation table-top soft X-ray sources. The review concludes with a consideration of proposed applications of diffractive imaging approaches to the determination of biomolecular structures from isolated molecules using fourth-generation X-ray free-electron laser sources.  相似文献   

4.
We present a novel method for fabricating polarization-stable oxide-confined single-mode GaAs based vertical cavity surface emitting lasers (VCSELs) emitting at 850 nm using a new soft-lithography nano-imprint technique. A monolithic surface grating is etched in the output mirror of the laser cavity using a directly imprinted silica-based sol-gel imprint resist as an etch mask. The opto-electronic performance of these devices is compared to VCSELs fabricated by state-of-the-art electron-beam lithography. The lasers made using the soft nano-imprint technique show single-mode TM lasing at a threshold and laser slope similar to that of devices made by e-beam lithography. The soft nano-imprint technique also enables the fabrication of gratings with sub-wavelength pitch, which avoids diffraction losses in the laser cavity. The resulting single-mode VCSEL devices exhibit 29% enhanced efficiency compared to devices equipped with diffractive gratings.  相似文献   

5.
We present a diffractive optical element consisting of computer-generated holograms and dielectric multilayer mirrors in a stratified setup. Illuminated with a white laser beam, consisting of three single lasers with wavelengths of 635 nm, 543 nm, and 473 nm, this element enables the far field projection of arbitrary, multicolor images. Certain advantages of holographic image generation, e.g., the possibility of a large depth of focus and a very easy optical setup, are maintained with the new element.  相似文献   

6.
Hugonnot E  Luce J  Coïc H 《Applied optics》2006,45(2):377-382
We present a degenerate noncollinear optical parametric chirped-pulse amplifier pumped by a high-energy, diode-pumped Nd:Glass regenerative amplifier delivering monomode pulses at 527 nm. The spatial mode shaping of the pump pulses is achieved with a diffractive laser cavity element, and temporal pulse shaping makes use of an electro-optic modulator and an arbitrary electrical waveform generator. Amplification at gain saturation achieves tailoring of the signal pulses. Numerical simulations with Miró software are presented and compared with experimental measurements.  相似文献   

7.
Noach S  Lewis A  Arieli Y  Eisenberg N 《Applied optics》1996,35(19):3635-3639
Diffractive elements can be designed for spectrum shaping in the Fourier or Fresnel plane by iterative methods. It is necessary to use a Fourier lens and the wavelength for which the diffractive elements were designed to get the required spectrum shaping at the Fourier plane. Using a different wavelength will cause chromatic aberration. We deal with the combination of refractive and diffractive elements and two or more different diffractive elements on the same element to get appropriate beam shaping of light sources with a multiple spectral output. Simulations are preformed that transform the profile of a He-Ne laser with a Nd:YAG laser source, and shape the trapezoidal beam profile of an excimer laser into a Gaussian beam is also considered.  相似文献   

8.
Haefner M  Pruss C  Osten W 《Applied optics》2011,50(31):5983-5989
We present a laser direct writing system for the efficient fabrication of high-resolution axicon structures. The setup makes use of scanning beam interference lithography incorporated with a fringe locking scheme for tight fringe phase control and allows us to fabricate large area structures with a period down to 450 nm.  相似文献   

9.
Zhang S  Yang Q  Lüpke G 《Applied optics》2005,44(27):5818-5823
We studied the spatial intensity profile of an ultrashort laser pulse passing through a laser beam shaping system, which uses diffractive optical elements to reshape a Gaussian beam profile into a flat-topped distribution. Both dispersion and nonlinear self-phase modulation are included in the theoretical model. Our calculation shows that this system works well for ultrashort pulses (approximately 100 fs) when the pulse peak intensity is less than 5 x 10(11) W/cm2. Experimental results are presented for 136 fs pulses at 800 nm wavelength from a Ti:sapphire laser with a 6 nJ pulse energy. We also studied the effects of lateral misalignment, beam-size deviation, and defocusing on the energy fluence profile.  相似文献   

10.
In laser projection systems the observer in the far field of the image points on the screen will recognize serious speckle noise. There are many methods to reduce or eliminate speckles in the near field by reducing or eliminating temporal or spatial coherence of the laser. But for the far field it is hardly possible to change the coherence properties of laser sources so that speckles will disappear. We propose a new method for eliminating speckles in the far field by using a diffractive optical element. The intensity modulation depth in the far-field speckle pattern can be reduced to a few percent while good beam quality is preserved.  相似文献   

11.
Extreme-ultraviolet (EUV) lithography remains a leading contender for use in the mass production of nanoelectronics at the 32 nm node. Great progress has been made in all areas of EUV lithography, including the crucial issue of fabrication of diffraction-limited optics. To gain an accurate understanding of the projection optic wavefront error in a completed lithography tool requires lithography-based aberration measurements; however, making such measurements in EUV systems can be challenging. We describe the quantitative lithographic measurement of spherical aberration in a 0.3 numerical aperture. EUV microfield optic. The measurement method is based on use of the unique properties of a programmable coherence illuminator. The results show the optic to have 1 nm rms spherical error, whereas interferometric measurements performed during the alignment of the optic indicated a spherical error of less than 0.1 nm rms.  相似文献   

12.
High-numerical-aperture zone plates have important applications in high-resolution optical maskless lithography as well as scanning confocal microscopy. We describe two methods to experimentally characterize the focusing properties, i.e., the point-spread function, of such diffractive lenses. The first method uses spot exposures in photoresist and the second uses a conventional knife-edge scan. The experimental results agree well with rigorous theoretical calculations.  相似文献   

13.
The spatial shaping of laser beams is a subject of research in modern optics. Recently the introduction of diffractive elements in laser resonators has offered an alternative to external beam-shaping optics by mode shaping within the resonator. We describe the specification of the laser resonator mirrors to obtain by means of internal mode shaping a desired beam outside the resonator. Modal discrimination of the modified resonator and the mirror alignment sensitivity is discussed. Basic features of resonator-originated and external beam shaping are compared.  相似文献   

14.
Khan FK  Cassidy DT 《Applied optics》2011,50(24):4834-4843
We report on the spectral properties for above-threshold operation of broadly tunable, asymmetric multiple quantum well (AMQW), coupled-cavity InGaAsP/InP semiconductor diode lasers. We developed a traveling wave model to understand the mode selection that the lasers exhibit. We find that a weak, short external cavity (SXC) can be used to obtain single frequency operation on each longitudinal mode over the ~100 nm tuning range of the uncoated AMQW coupled-cavity lasers. We measured the spectral properties of AMQW coupled-cavity lasers with and without an SXC. In a synthesized optical coherent optical tomography application, the use of an SXC with an AMQW coupled-cavity laser reduces the coherence length and hence enhances the performance of the AMQW coupled-cavity laser for optical coherence tomography applications.  相似文献   

15.
We report the imprinting of nanometer-scale gratings by interferometric lithography at /spl lambda/=46.9 nm using an Ne-like Ar capillary discharge laser. Gratings with periods as small as 55 nm were imprinted on poly-methyl methacrylate using a Lloyd's mirror interferometer. This first demonstration of nanopatterning using an extreme ultraviolet (EUV) laser illustrates the potential of compact EUV lasers in nanotechnology applications.  相似文献   

16.
We propose a method to narrow the gap between the rigorous methods for the propagation of partially coherent light, which require excessive computational capacity, and the numerical methods used in practical engineering applications, where it is not clear how to handle spatial and temporal coherence in a statistically correct manner. As is the case for the latter methods, the numerical method described can deal with fields with a large spatial and temporal extent, which is necessary in practical applications such as laser fusion or optical lithography. However, the method also takes a few steps toward a more rigorous, yet efficient, representation of the optical field, which depends on detailed specified coherence properties of the radiation. The described method uses a set of independent monochromatic fields at different oscillation frequencies. The frequencies are chosen such that the statistical properties of the integrated intensity closely resemble those from a full-time trace treatment. Finally, we demonstrate the capabilities and limitations of the method with a few numerical examples of the propagation of a large field with a specified spatial and temporal coherence.  相似文献   

17.
We address the problem of shaping the radiant intensity distribution of a highly nonparaxial coherent field by means of a diffractive element located in the plane of the beam waist. To be capable of wide-angle energy redistribution the element must necessarily contain wavelength-scale transverse features, and consequently it must be designed on the basis of rigorous diffraction theory. We consider, in particular, wide-angle Gaussian to flat-top beam shaping in one dimension. Scalar designs are provided and their validity is evaluated by rigorous diffraction theory, which is also used for optimization deep inside the nonparaxial domain, where the scalar designs fail. Experimental verification is provided by means of electron-beam lithography.  相似文献   

18.
Xu D  Chen KP  Ohlinger K  Lin Y 《Nanotechnology》2011,22(3):035303
We report a combined holographic and nanoimprinting lithography technique to produce three-dimensional woodpile photonic crystal templates through only one single exposure. The interference lithography process uses an integratable diffractive optical element for large throughout 3D pattern manufacturing. The diffractive optical element consists of two layers of phase grating separated by an intermediate layer, fabricated by repeated nanoimprinting lithography, followed by an SU8 photoresist bonding technique. Grating periods, relative orientation, diffraction angle, and efficiency, as well as layer to layer phase delay, are well designed during manufacturing. By thermally optimizing the thickness of the intermediate layer, this paper demonstrates the fabrication of interconnected 3D photonic structures with arbitrary symmetry through a single laser exposure. The two-layer phase mask approach enables a CMOS-compatible monolithic integration of 3D photonic structures with other integrated optical elements and waveguides.  相似文献   

19.
Johansson M  Hård S 《Applied optics》1999,38(8):1302-1310
A multichannel diffractive optic rotary joint was designed, fabricated by electron-beam lithography, and evaluated with regard to cross talk and to output signal power variations. High cross-talk margin (>25 dB) and low output signal power variations (<2 dB) were achieved. The sensitivity to input-light-beam wavelength uncertainty was investigated. Two design examples are presented. The first design eliminates cross talk due to unwanted diffraction orders and shows that for a ten-channel joint the wavelength uncertainty of an 850-nm emitting laser must be less than 8 nm. In the second design cross talk due to the second diffraction order is permitted, which results in a tolerance level that is three times better for wavelength uncertainty.  相似文献   

20.
Lin Y  Rivera D  Poole Z  Chen KP 《Applied optics》2006,45(31):7971-7976
We demonstrate, for what is believed to be the first time, the design of diamondlike photonic crystals made by holographic lithography based on five-beam interference. All five beams are launched from the same half-space, and the exposure can easily be realized by a single diffractive optical element. The photonic structure can be constructed through the translation of the interference pattern controlled by the phase shift of laser beams. The proposed holographic lithography is capable of creating series photonic crystals with large photonic bandgaps by adjusting the phase and the wave vector of interfering beams.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号