首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
地震中土工格栅加筋土挡墙的动态行为与抗震机理的认识还尚不清楚。采用叠层剪切型模型土箱开展大型振动台试验,基于量纲理论π定理的Froude常数设计试验模型,考虑近远场地震动影响,采用汶川地震中松潘远场波、什邡近场波和Taft中远场地震波,测试墙体加速度、加筋回填土加速度、墙体侧向变形、加筋区与非加筋区回填土表面震陷、加筋区填土超静孔隙水压力以及土工格栅应变特性,得出远场和中远场地震波对加筋结构产生了强烈的宏观反应特征,而近场波对加筋区填土超静孔隙水压力的微观反应影响显著,加速度和沉降反应特征表明土工格栅为柔性挡土墙提供了较强的抗震能力,格栅应变分布特征揭示了柔性挡土墙上受力分布规律。研究结果将为土工格栅加筋土挡墙抗震安全设计和工程施工提供依据。  相似文献   

2.
在公路路堤的施工中,广泛的应用土工格栅加筋挡土墙技术可以有效地对公路路堤进行加固,防止土体产生侧向的位移,从而增强了公路路堤的稳定性以及耐久性。文章通过分析了土工格栅加筋挡土墙的作用,深入地探析了公路路堤施工中土工格栅加筋挡土墙技术的应用。  相似文献   

3.
循环荷载作用下刚柔性桩加筋复合地基中土工格栅工作性状的研究尚不多见。采用室内模型试验方法,通过改变循环荷载的频率及幅值,分析循环荷载作用下土工格栅的应变变化规律。结果表明,循环荷载下土工格栅应变变化规律与所施加的循环荷载相关,循环荷载作用下柔性桩边缘位置的土工格栅应变最大,其受循环荷载幅值及频率的影响也最大,这应在工程实践中引起重视。  相似文献   

4.
为了解低填方软土路基中土工格栅对地基变形的影响,在广州市东新高速公路试验段进行了现场试验。试验路段内填方高度均在3m以下,分别进行了天然地基快速填筑试验、天然地基结合土工格栅加筋及袋装砂井处理地基结合土工格栅加筋等试验,通过对地基变形、土工格栅受力的监测,获得基础参数,进一步分析低填方条件下土工格栅在地基变形、受力特征等方面的作用特征。本文是该段试验成果的一部分,对于超软地基低路堤的设计和施工都有一定借鉴意义。  相似文献   

5.
王晓华  陈天骄  孙闯 《山西建筑》2010,36(30):284-285
通过ANSYS软件对土工格栅加筋路面结构进行力学分析,研究了加入土工格栅后路面的弯沉、应力、应变等状态的变化,分别针对土工格栅加筋路面有裂缝路面、旧路补强路面建立有限元模型进行了计算,从而得出了一些有益的结论。  相似文献   

6.
在简要分析土工格栅加筋技术的基础上,从加筋土工格栅的铺设、底层与上层土工格栅的铺设及土工格栅施工质量验收等方面,具体探讨了土工格栅加筋技术在公路路基加宽施工中的优化应用,以保证公路路基加宽施工的质量。  相似文献   

7.
通过埋设水平土压力盒、柔性位移计,对模块式土工格栅加筋土挡土墙墙后的水平土压力和格栅水平变形进行了系统监测,采用加筋组合法对加筋土挡墙的土压力进行了计算,与实测、交系数法所得数据对比分析,得出采用该方法计算的土压力更能合理地解释工作状态下加筋土挡墙的土压力分布规律;对比分析了施工阶段和竣工后格栅的应变,得出拉筋应变主要发生在施工阶段,工后应变较小,并结合试验结果,提出了关于施工控制的相关建议.  相似文献   

8.
 将三参数黏弹性模型用于描述土工格栅在低应力水平下所表现出的蠕变特性,根据蠕变试验采用最优化方法确定有关模型参数,并证明三参数黏弹性模型能够较准确地反映土工格栅在低应力水平情况下的2个阶段衰减蠕变特性。然后,提出基于土工格栅黏弹特性的加筋土本构模型,得到土处于弹性和塑性阶段时加筋土的应力、应变计算公式。研究结果指出:加筋土中土工格栅应力与加筋土受力、格栅和土的特性、加筋层间距及时间有关;土体进入塑性状态后,土工格栅应力不变,主要表现出蠕变性,导致加筋土的应变随时间增加;随着时间的推移,土工格栅出现应力松弛,它与土体应力逐渐减小;土工格栅埋置于土中时的应力松弛量小于置于空气中的应力松弛量;加筋土塑性状态到达时间Tp受土工格栅的刚度系数E2、黏滞系数? 和土的内摩擦角? 的影响最大。  相似文献   

9.
土工格栅的强度衰减特性对加筋路堤和加筋挡墙的稳定性有重要影响。对塑料土工格栅进行了应力控制式单向循环拉伸试验,研究了循环拉力、预拉力、加载频率等对格栅应变软化及变形的影响。试验结果表明,随着循环拉力、预拉力的增加,格栅的累积应变增大,软化指数增大,强度减弱;荷载振动频率的减小也会产生类似的结果。通过对试验数据的分析,总结了格栅应变软化的规律,并将其引入改进的Iwan模型中,建立了能描述循环拉伸荷载作用下土工格栅的拉力应变关系的模型,通过将模型计算结果与试验结果的对比,验证了模型的正确性。  相似文献   

10.
超高无面板式土工格栅加筋路堤现场试验研究   总被引:1,自引:0,他引:1  
结合在建宜巴高速公路50 m高的加筋填土断面进行现场试验,对超高无面板式土工格栅加筋路堤的格栅变形、垂直土压力、水平土压力、分层沉降以及深层水平位移等内容进行了近2 a的测试,研究超高无面板式土工格栅加筋土路堤的受力、变形规律,分析了其作用机理。结果表明:不同层位土工格栅的最大拉应变出现在离返包面约4~6 m处,格栅应变沿筋长呈双峰值分布,施工期土工格栅应变具有明显的滞后性,且工后1.5 a格栅出现明显的收缩回弹;土工格栅的存在对土压力分布具有明显的调整作用,格栅末端附近实测垂直土压力值略超过理论值,中间和近坡面部位实测土压力值小于理论值;水平土压力沿路堤高度呈非线性形式分布,路堤中部的水平土压力值略大于顶部,其值小于主动土压力;分层沉降量在施工期存在较大波动,在垂直高度上,上部和底部偏小,中下部偏大;深层水平位移随着深度的增加逐渐减小,填土结束后深层水平位移仍有一定程度增大。  相似文献   

11.
土工格栅控制液化土体流动变形的试验研究   总被引:1,自引:0,他引:1  
陈育民  周晓智  徐君 《岩土工程学报》2017,39(10):1922-1929
液化导致的土体大变形以及侧向流动是地震引起建筑物破坏的主要原因。采用土工格栅作为主要加固材料,开展建筑物荷载作用下液化场地流动变形的振动台试验研究,考虑水平层状土工格栅、包裹状土工格栅和土工格栅+无纺布联合处理等3种加固方案对结果的影响,从超孔隙水压力发展、建筑物沉降量以及格栅应变特性等分析加固方案对液化变形的处理效果。试验表明:采用上述3种加固方案所得的相同埋深处超孔隙水压力峰值基本相等,表明土工格栅的加入基本不能改变地基的液化状态,而后期超孔隙水压力在土工格栅+无纺布联合加固方案下消散速度最快。与其它两种加固方案相比,土工格栅+无纺布联合加固方案下建筑物沉降量最小,相比未加固工况沉降量减少24%,土工格栅中间位置的应变峰值小于边缘位置的应变峰值。采用土工格栅+无纺布联合加固时,具有较大表面积的无纺布对该覆盖区域液化土体有较好的约束作用,限制了砂土颗粒的竖向移动。此外,砂土颗粒对无纺布的作用力将由土工格栅承担,这种作用力将有利于土工格栅与砂土之间的摩擦效应,进一步限制液化砂土的流动变形。  相似文献   

12.
Road construction in karst areas is a challenging task. Combining the advantages of geosynthetics and fiber Bragg grating (FBG), this paper creatively presents a new type of FBG-3D printed geogrid, which allows reinforcement and accurate deformation monitoring. A series of model tests were carried out to investigate the mechanical and deformation characteristics of the subgrade with underlying karst cave reinforced by FBG-3D printed geogrid. The experimental results indicated that the fully coordinated deformation between FBG sensor and geogrid was successfully achieved by 3D printing technology, and the relationship between fiber wavelength and strain was obtained. The existence of cave had an adverse effect on the subgrade, but the FBG-3D printed geogrids effectively improved the bearing capacity and footing settlement, and the reinforcement effect increased with the decrease of geogrid spacing. In the cyclic loading experiments, the earth pressure inside the subgrade reinforced by geogrid changed as a half-sine wave in each cycle. The FBG sensors accurately measured the strain change inside the subgrade, and the data showed that the deformation of measuring point above the cave model was the largest. The research conclusions provide important basic data for the construction and monitoring of highway and geotechnical engineering projects.  相似文献   

13.
Reinforcing elements embedded within soil mass improve stabilization through a load transfer mechanism between the soil and the reinforcement. Geogrids are a type of geosynthetic frequently used for soil reinforcement, consisting of equally spaced longitudinal and transverse ribs. Under pullout conditions, the longitudinal ribs are responsible for tensile resistance, while transverse ribs contribute to a passive resistance. This paper describes a new analytical model capable of reproducing both load transfer and displacement mechanisms on the geogrid length, under pullout conditions. The model subdivides the geogrid into rheological units, composed by friction/adhesion and spring elements, mounted in line. Friction/adhesion elements respond to the shear component mobilized at the soil–geogrid interface. Spring elements respond to the geogrid's tensile elongation. Model parameters are obtained through tensile strength tests on geogrids and conventional direct shear tests on soil specimens. The need for instrumented pullout tests becomes therefore eliminated. Results predicted from this new model were compared to instrumented pullout test data from two types of geogrids, under various confining stress levels. The results revealed that the new model is capable of reasonably predicting load and displacement distributions along the geogrid.  相似文献   

14.
《Soils and Foundations》2007,47(6):1109-1122
The effects of geosynthetic reinforcement type on the strength and stiffness of reinforced sand were evaluated by performing a series of drained plane strain compression tests on large sand specimens. The reinforcement type is described in terms of the degree of unification of the constituting components (for geocomposites) as well as the tensile strength and stiffness, the covering ratio and others (for geocomposites and geogrids). Sand specimens reinforced with different geosynthetic reinforcement types exhibited significantly different reinforcing effects. A geocomposite made of a woven geotextile sheet sandwiched firmly with two sheets of non-woven geotextile, having a 100% effective covering ratio, exhibited reinforcing effects higher than typical stiff and strong geogrids. With some geocomposite types, the reinforcing effects increase substantially by better unifying longitudinally arranged stiff and strong yarns and non-woven geotextile sheets. When fixed firm to the yarns, the non-woven geotextile sheets function like the transversal members of a geogrid by locally transmitting load activated by interaction with the backfill to the yarns. These geocomposites can exhibit reinforcing effects equivalent to those with stiff and strong geogrids. Local strain fields of the specimens are presented to show that, for reinforced sand, the peak stress state reached is always associated with the development of shear band(s) in the sand and a higher peak strength is achieved when the strain localisation starts at a larger global axial strain due to better reinforcing effects.  相似文献   

15.
为了研究动静荷载下,加筋长度及筋材类型变化对加筋土挡墙工作性能的影响,进行了7种工况下的加筋土挡墙模型试验,对比分析了加筋土挡墙的水平土压力、水平土压力系数、墙面水平位移和加载板竖向沉降及筋材应变等参数的发展规律。试验结果表明:动载下加筋土挡墙筋材应变随着加载时间的增长、加筋长度的减小、位置高度的增加而增大,且顶层筋材应变远远大于其他层;加筋长度及筋材横肋的减少明显降低挡墙的承载性能,格栅横肋减少导致挡墙极限承载力降低18% ,加筋长度减少使面板水平位移最大增大了2.2倍;与静载作用下相比,动载下土工格栅的侧向约束作用及网兜效应能够得到更好地发挥。  相似文献   

16.
Geosynthetic reinforced soil embankment are extensively applied in the construction of high-speed railway and highway in mountainous regions but limited field monitoring is conducted on high and steep cases. Aiming to acquire better understanding, a 33-m-high single-tiered wrapped-facing geogrid reinforced soil embankment with the slope of 1 V:0.5H in China was monitored for 2 years during and after construction. Vertical earth pressure, strain of geogrids, horizontal displacement and settlement per layer were recorded and analysed. The results show that the geogrid tensile strains gradually increased during construction. And they were still developing after completion due to creep and subsequent vehicle surcharge load. The predictions of reinforcement loads by the FHWA methods were much higher than the estimated ones from measured strains. The vertical earth pressures linearly grew during construction and then stabilized fast. The horizontal displacement increases with height and the largest value achieved around the top of the slope two years after the construction is 0.14% the total height approximately. The settlement per layer is larger in the lower and middle portion of the embankment and no obvious change is observed over time. This study hopes to serve as a case reference for design and construction of similar reinforcement projects in the future.  相似文献   

17.
对塑料土工格栅加筋土结构的缩尺比例模型进行了振动台试验研究。试验过程中,采用两组试验模型,一组测定筋材的动应力应变;一组测定土筋间的动似摩擦系数。试验结果表明:塑料土工格栅筋材在地震作用下最大动拉应力的分布与静拉应力的分布沿筋材的埋深大致相同,只是应力的值大小不同;地震作用下土筋间的动似摩擦系数是随地震加速度的增加而减小。据此,提出了加筋土结构在地震区的设计建议。  相似文献   

18.
While there is significant field evidence of the benefits of geosynthetic-reinforced asphalt overlays, their use has focused on minimizing the development of reflective cracks. Yet, geogrids in asphalt overlays are also expected to develop reinforcement mechanisms that contribute to the pavement structural capacity. Specifically, the use of geosynthetics in asphalt overlays may also improve the mechanical behavior of paved roads by controlling permanent displacements and reducing strains in the pavement layers. While relevant advances have been made towards identifying the mechanisms in geosynthetic stabilization of base courses, such mechanisms may differ from those that develop in geosynthetic-reinforced asphalt overlays. This paper investigates the development and distribution of tensile strains along geogrids used to reinforce asphaltic layers. Experimental data was collected from large-scale paved road models subjected to the repeated loading imparted by wheel traffic. Specifically, the study examines both the elastic and permanent components of displacements induced in geogrids by using mechanical extensometers attached to the geogrids. The testing program includes a number of geosynthetic-reinforced paved road models, as well as a control (unreinforced) section that was also instrumented for comparison purposes. Asphalt strain gauges were used to measure strains within the asphalt concrete layer, providing an additional source of information that proved to be highly consistent with the results obtained from the extensometers. The experimental results showed a progressive mobilization of permanent geogrid strains that reached a final profile beyond which additional traffic loading did not result in additional straining. In comparison, higher strains developed in the unreinforced model, which showed a continuously increasing trend. Elastic tensile strains in the asphalt mixture and rutting under the wheel load were comparatively smaller when using geogrids. Overall, the results generated in this study indicate that the presence of geogrids in asphalt overlays results in a lateral restraining mechanism that influences on the mechanical behavior of flexible pavements.  相似文献   

19.
Geogrids have been commonly used in reinforced soil structures to improve their performance. To investigate the geogrid reinforcement mechanisms, discrete element modelling of unreinforced and geogrid reinforced soil foundations and slopes was conducted under surface strip footing loads in this study. For unreinforced and reinforced soil foundations, the numerically obtained footing pressure-settlement relationships were validated by experimental results from the literature. In the numerical modelling of unreinforced and reinforced soil slopes, identical models and micro input parameters to those used in the numerical modelling of unreinforced and reinforced soil foundations were used. The geogrid reinforcing effects under strip footing loads were visualised by the qualitative contact force distributions in the soil structures, as well as the qualitative and quantitative tensile force distributions along the geogrids. In addition, the qualitative displacement distributions of soil particles in the soil structures and the quantitative vertical displacement distributions along soil layers/geogrids also indicated the geogrid reinforcing effects in such practical reinforced soil structures. The discrete element modelling results visualise and quantify the load transfer and spreading behavior in geogrid reinforced soil structures, and it provides researchers with an improved understanding of geogrid reinforcing effects at microscopic scale under strip footing loads.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号