首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have investigated the wavelength conversion techniques for differential phase-shift keying (DPSK) modulation formats in 10 Gb/s transmission systems, compared with the non-return-to-zero (NRZ) modulation format. For the wavelength conversion of DPSK modulation formats, we employed the wavelength converters based on the four-wave mixing (FWM) in semiconductor optical amplifiers (SOAs) and the frequency comb generated by phase modulation. The power penalty at 10/sup -9/ bit error rate was used as a measure of the system performance degraded by the wavelength conversion. Our simulation results show that the DPSK modulation formats have a smaller power penalty than the NRZ modulation format for the wavelength conversion using the FWM effect in an SOA due to a much lower pattern effect. However, as the wavelength conversion uses the frequency comb generated by phase modulation, it has a similar power penalty compared with the NRZ modulation format. It is also shown that the DPSK modulation formats are possible to obtain the power penalty less than 0.4 dB for both wavelength conversion techniques.  相似文献   

2.
Increased interest in novel modulation formats for optical transmission has come up in recent years. Receivers with interferometric direct detection can be used to detect arbitrary modulation formats with differentially encoded phases as differential phase-shift keying (DPSK) and differentially phase-encoded star-shaped quadrature amplitude modulation (Star QAM). In this paper, two novel 16-ary modulation formats, which are the 16 DPSK and the Star 16 QAM (ASK-8 DPSK), are characterized for optical transmission for the first time. To be able to identify clear performance tendencies for high-order optical modulation, the novel formats are compared to a wide range of already investigated formats by conducting comprehensive calculations in a uniform simulation environment. The influence of different transmitter structures and decision schemes is considered, and all the systems are characterized with respect to the optical signal-to-noise ratio requirements, dispersion tolerance, and self-phase-modulation (SPM) performance for nonreturn-to-zero (NRZ) and RZ pulse shapes. Moreover, an inherent problem of Star QAM transmission concerning SPM is illustrated, and compensation techniques are examined. The results give a substantial insight into the properties of high-order optical modulation formats.  相似文献   

3.
An all-optical converter from return-to-zero (RZ) pulses to the nonreturn-to-zero (NRZ) format is presented. The converter operates in two stages: the laser generated in a gain-clamped semiconductor optical amplifier (SOA) is modulated with the data signal; afterwards this signal is wavelength-converted by cross-gain modulation in a common SOA. The setup is noninverting and can feature wavelength conversion. Experimental error-free conversion from 5- and 40-ps RZ pulses to NRZ format is presented at 10 Gb/s using a 211-1 bit sequence  相似文献   

4.
Optical DPSK at 565 Mb/s is performed by direct modulation of a narrow-linewidth 1.5-μm SL-QW-DFB (strain layer-quantum well-distributed feedback) transmitter laser. The bipolar RZ drive signal has no DC component which allows penalty-free transmission of 2 23-1 bit patterns. The heterodyne receiver contains an endless polarization controller with <6.3 or >12 rad/s tracking speed, depending on the tolerable intensity loss. A loss span of 62.3 dB is achieved,without degradation due to stimulated Brillouin scattering  相似文献   

5.
This paper demonstrates a multichannel wavelength conversion of differential phase-shift-keyed (DPSK) signals using four-wave mixing in a highly nonlinear fiber. The wavelengths of three 10-Gb/s nonreturn-to-zero (NRZ) DPSK channels are simultaneously converted without incurring the cross-gain modulation penalty usually associated with on-off-keyed signals. A maximum conversion efficiency of 85% was achieved for both NRZ and return-to-zero DPSK signals.  相似文献   

6.
提出了一种全新的基于相位-强度混合调制和色散补偿的光差分相移键控(DPSK)信号的非归零(NRZ)到归零(RZ)格式转换器,理论分析了转换器参数对转换的影响,数值研究了恶化条件下的10 Gb/s的NRZ-DPSK到RZ-DPSK的格式转换。实验展示了10 Gb/s的DPSK信号格式转换及解调后的误码性能。计算结果表明,通过设计转换器参数可获得低占空比RZ-DPSK信号,且转换后信号质量较高。实验结果表明格式转换功率代价较低,转换后RZ-DPSK信号时间抖动较原NRZ-DPSK信号减小。该格式转换器还适合光四相差分相移键控(DQPSK)的非归零到归零格式转换及多波长操作。  相似文献   

7.
《Electronics letters》1995,31(21):1865-1866
The authors have demonstrated direct optical demultiplexing of NRZ signals with simultaneous wavelength conversion by using a side-injection-light-controlled bistable laser diode module. The 250 Mbit/s demultiplexed output signals are each selected once every four bits from 1 Gbit/s NRZ optical input signals. Then each signal is regenerated and its bit width and wavelength are converted on one chip  相似文献   

8.
The improvement in the receiver sensitivity due to the reduced chirp is examined for NRZ and RZ intensity modulation, direct detection systems operating in the 1.55-μm wavelength region with conventional single-mode optical fiber. The methodology involves (a) solving modified rate equations numerically for the optical power and phase of the external resonator laser in response to an injected current waveform, (b) modeling the signal transmission properties of single-mode optical fibers by convolution and modulus squared operations, and (c) using a truncated pulse train approximation to evaluate the probability of error in the presence of intersymbol interference, shot noise, avalanche photodiode multiplication noise, and preamplifier circuit noise. The numerical results indicate an almost threefold improvement in the achievable transmission distance for a bit rate of 4.8 Gb/s  相似文献   

9.
Modulation and demodulation techniques are described for an optical PSK heterodyne transmission system operating at 560 Mb/s and 1.2 Gb/s. Performance limitations affecting the receiver sensitivity in a 1.2-Gb/s DPSK system, such as laser phase noise, phase modulation depth, IF center frequency deviation, and local laser power, are studied. High receiver sensitivities for PSK systems were achieved. The applicability of the Mach-Zehnder modulator as a phase modulator for 1.2-Gb/s DPSK is also demonstrated. A 1.2-Gb/s DPSK transmission of over 100 km, using polarization diversity with novel polarization-insensitive automatic frequency control in an attempt to overcome signal fading caused by polarization fluctuation in the transmitting fiber, is also described. A receiver sensitivity of less than -42.8 dBm and varying within 1.4 dB for all states of polarization was achieved. A multichannel high-definition TV (HDTV) transmission experiment using a DPSK polarization-diversity tunable receiver is described  相似文献   

10.
We investigate a wavelength-division-multiplexing passive optical network (WDM-PON) with centralized lightwave and direct detection. The system is demonstrated for symmetric 10 Gbit/s differential phase-shift keying (DPSK) downstream signals and on-off keying (OOK) upstream signals, respectively. A wavelength reused scheme is employed to carry the upstream data by using a reflective semiconductor optical amplifier (RSOA) as an intensity modulator at the optical network unit (ONU). The constant-intensity property of the DPSK modulation format can keep high extinction ratio (ER) of downstream signal and reduce the crosstalk to the upstream signal. The bit error rate (BER) performance of our scheme shows that the proposed 10 Gbit/s symmetric WDM-PON can achieve error free transmission over 25-km-long fiber transmission with low power penalty.  相似文献   

11.
An optical-and-electrical hybrid-type amplitude regenerator for an NRZ–DPSK signal suffering from optical amplifier noise is described. The system is a feed-forward control circuit composed of a coupler, a photo detector, and an intensity modulator, and works to suppress intensity fluctuations in a DPSK signal while preserving phase information. A schematic explanation of how the DPSK transmission performance is improved with intensity noise suppression during transmission is presented, and an experiment to demonstrate its effect is conducted.  相似文献   

12.
In this paper,we describe the generation,detection,and performance of frequency-shift keying (FSK) for high-speed optical transmission and label switching.A non-return-to-zero (NRZ) FSK signal is generated by using two continuous-wave (CW) lasers,one Mach-Zehnder modulator (MZM),and one Mach-Zehnder delay interferometer (MZDI).An RZ-FSK signal is generated by cascading a dual-arm MZM,which is driven by a sinusoidal voltage at half the bit rate.Demodulation can be achieved on 1 bit rate through one MZDI or an array waveguide grating (AWG) demultiplexer with balanced detection.We perform numerical simulation on two types of frequency modulation schemes using MZM or PM,and we determine the effect of frequency tone spacing (FTS) on the generated FSK signal.In the proposed scheme,a novel frequency modulation format has transmission advantages compared with traditional modulation formats such as RZ and differential phase-shift keying (DPSK),under varying dispersion management.The performance of an RZ-FSK signal in a 4 × 40 Gb/s WDM transmission system is discussed.We experiment on transparent wavelength conversion based on four-wave mixing (FWM) in a semiconductor optical amplifier (SOA) and in a highly nonlinear dispersion shifted fiber (HNDSF) for a 40 Gb/s RZ-FSK signal.The feasibility of all-optical signal processing of a high-speed RZ-FSK signal is confirmed.We also determine the receiver power penalty for the RZ-FSK signal after a 100 km standard single-mode fiber (SMF) transmission link with matching dispersion compensating fiber (DCF),under the post-compensation management scheme.Because the frequency modulation format is orthogonal to intensity modulation and vector modulation (polarization shift keying),it can be used in the context of the combined modulation format to decrease the data rate or enhance the symbol rate.It can also be used in orthogonal label-switching as the modulation format for the payload or the label.As an example,we propose a simple orthogonal optical label switching technique based on 40 Gb/s FSK payload and 2.5 Gb/s intensity modulated (IM) label.  相似文献   

13.
A comparison between external phase modulation and phase modulation obtained through direct current modulation of a multiquantum-well distributed feedback (DFB) transmitter is reported for a sensitive 565 Mb/s differential-phase-shift-keying (DPSK) heterodyne transmission experiment. A limited sensitivity penalty for direct phase modulation is expected from the driving current pulse shape, the transmitter FM response and the receiver characteristics. The experimentally observed 0.5 dB penalty is in agreement with theory and highlights the potential of direct DPSK modulation as compared to both standard DPSK and continuous-phase frequency shift keying (CPFSK) schemes.<>  相似文献   

14.
申静  李俊奇 《激光技术》2019,43(5):641-645
为了研究光差分相移键控(DPSK)调制格式在光纤高速传输系统中的色散补偿, 利用色散补偿光纤(DCF)的色散补偿原理, 对40Gbit/s光纤传输系统进行色散补偿, 分析了40Gbit/s单通道光纤传输系统中3种DPSK调制格式信号的频谱特性; 仿真了3种码型的色散容忍度以及3种调制格式在考虑光纤的非线性下的色散补偿方案。结果表明, 光非归零码差分相移键控(NRZ-DPSK)信号具有最好的色散容忍度, 但其受非线性的影响比较大; 33%归零码差分相移键控(33%RZ-DPSK)信号的色散容忍度差, 但其色散补偿后的效果优于NRZ-DPSK; 而载波抑制归零码差分相移键控信号对色散和非线性效应都有较好的抑制; 3种DPSK调制格式均在对称补偿2方案中色散补偿的效果最佳。此仿真研究对光DPSK信号在光纤中的色散补偿具有参考意义。  相似文献   

15.
The frequency response of a unidirectional-output optical frequency conversion device is measured. The device has a saturable absorber region within the active region, which acts as an optical gate for converted light. The 3-dB bandwidth of the device with saturable absorber region is measured up to 800 MHz, and is found to be limited by the frequency response of the saturable absorber region. To operate the device faster, lasing mode intensity modulation by input light is attempted by using the device in a laser diode mode. In this case, the electrodes of the saturable absorber and the gain regions are connected electrically, and the saturable absorber region is also biased far above the threshold condition at the same time with the gain region. The 3-dB bandwidth of the device increases to over 10 GHz, and the 10-Gb/s nonreturn-to-zero (NRZ) eye pattern can be observed when the input TM-polarized light intensity is modulated by a 10-Gb/s NRZ pseudorandom signal  相似文献   

16.
利用TOAD实现10 Gbit/s全光非归零码到归零码的转换   总被引:2,自引:4,他引:2  
利用从非归零(NRZ)信号中全光提取的时钟,采用太赫兹光非对称解复用器(TOAD)实现了10 Gbit/s非归零码到归零(RZ)码的码型转换。非归零信号采用半导体光放大器(SOA)进行时钟分量增强并用平面波导阵列(AWG)滤出相应的伪归零(PRZ)信号,然后采用半导体光放大器注入锁模光纤环形激光器进行时钟提取,提取的时钟信号和待转换的非归零信号分别作为抽运光和探测光输入太赫兹光非对称解复用器,在其中进行码型转换。转换后输出的归零信号的质量仅由恢复的时钟信号和非归零信号的质量决定,受太赫兹光非对称解复用器中半导体光放大器增益恢复时间的影响极小。实验测得转换后的归零信号消光比为8.7dB,码型效应非常低,其光谱明显展宽.并且出现谱间隔为0.08nm的多峰结构,与10 Gbit/s的比特速率相对应。该方法对时钟信号的码型效应有一定的容忍度。  相似文献   

17.
We propose an arrayed waveguide grating(AWG)-based 10 Gbit/s per channel full duplex wavelength division multiplexing passive optical network(WDM-PON).A chirp managed directly modulated laser with return-to-zero(RZ) differential phase shift keying(DPSK) modulation technique is utilized for downlink(DL) direction,and then the downlink signal is re-modulated for the uplink(UL) direction using intensity modulation technique with the data rate of 10 Gbit/s per channel.A successful WDM-PON transmission operation with the data rate of 10 Gbit/s per channel over a distance of 25 km without any optical amplification or dispersion compensation is demonstrated with low power penalty.  相似文献   

18.
物联网、虚拟现实及人工智能等技术的发展加大了对光纤接入无源光网络带宽的需求,其中调制器成为制约无源光网络带宽的关键因素。结合了直接调制激光器和外调制器各自优势的啁啾管理激光器以产生结构简单、便于集成等特点受到了广泛关注。采用耦合速率方程理论研究了啁啾管理激光器的动力学特性,分析了40 Gbit/s啁啾管理调制格式的产生原理及时频域特性,并在高速无色散补偿接入网中与由外调制器产生的40 Gbit/s非归零调制格式进行了性能对比。结果表明,带宽为48.5 GHz的40 Gbit/s啁啾管理调制格式在1 dB灵敏度代价下所对应的色散容限为215 ps/nm,与非归零调制格式相比其无色散补偿传输距离增加了1.6倍,表现出了强的抗色散能力,在高速接入网中也体现了较高的应用价值。相关结果可为实际系统设计提供理论参考。  相似文献   

19.
This paper proposes a novel duobinary-mode-splitting scheme that uses wideband phase-shift-keying (PSK)/amplitude-shift-keying (ASK) conversion for modulation and detection of bandwidth-reduced return-to-zero (RZ) modulation formats. We have first demonstrated that the proposed scheme greatly simplifies the modulation process of the duobinary carrier-suppressed RZ format (DCS-RZ) based on baseband binary nonreturn-to-zero (NRZ) modulation. We also proposed carrier-suppressed RZ differential-phase-shift-keying format (CS-RZ DPSK) as a novel bandwidth-reduced RZ format by applying the proposed scheme in the detection process. These novel RZ formats are shown to be very useful for dense wavelength-division multiplexed (DWDM) transport systems using high-speed channels, over 40 Gb/s, with spectrum efficiencies higher than 0.4 b/s/Hz. We demonstrate that the proposed modulation and detection scheme greatly simplifies the DWDM transmitter and receiver configuration if the periodicity of the optical PSK/ASK conversion filter equals the WDM channel spacing. The large tolerance of the formats against several fiber nonlinearities and their wide dispersion tolerance characteristics are tested at the channel rate of 43 Gb/s with 100-GHz spacing. The novel CS-RZ DPSK format offers higher nonlinearity tolerance against cross-phase modulation than does the DCS-RZ format.  相似文献   

20.
We compare three microwave modulation methods experimentally and theoretically using a semiconductor quantum-well (QW) Fabry-Perot test laser: (1) direct microwave current modulation of the test laser (electrical modulation); (2) optical modulation by an external single-wavelength pump laser with a modulated optical injection power; and (3) electrical modulation of the test laser that is injection locked by an external single-wavelength pump laser with a constant injection power. This is the first direct comparison of the three modulation methods on the same QW laser, to the best of our knowledge. The bandwidth of optical absorption modulation is 7.7 GHz, which is 1.45 times the direct electrical modulation bandwidth (5.3 GHz) at a bias current of 30 mA in the test laser. On the other hand, the electrical modulation of the test laser under injection-locking condition has a significantly higher modulation bandwidth (10.5 GHz) than both the electrical and optical modulation methods  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号