首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
We have investigated the subcellular localization of the SMC protein in the gram-positive bacterium Bacillus subtilis. Recent work has shown that SMC is required for chromosome condensation and faithful chromosome segregation during the B. subtilis cell cycle. Using antibodies against SMC and fluorescence microscopy, we have shown that SMC is associated with the chromosome but is also present in discrete foci near the poles of the cell. DNase treatment of permeabilized cells disrupted the association of SMC with the chromosome but not with the polar foci. The use of a truncated smc gene demonstrated that the C-terminal domain of the protein is required for chromosomal binding but not for the formation of polar foci. Regular arrays of SMC-containing foci were still present between nucleoids along the length of aseptate filaments generated by depleting cells of the cell division protein FtsZ, indicating that the formation of polar foci does not require the formation of septal structures. In slowly growing cells, which have only one or two chromosomes, SMC foci were principally observed early in the cell cycle, prior to or coincident with chromosome segregation. Cell cycle-dependent release of stored SMC from polar foci may mediate segregation by condensation of chromosomes.  相似文献   

3.
4.
Cyclophilin (the product of the ppiB gene) and the trigger factor (the product of the tig gene) are the only cytosolic peptidyl-prolyl cis-trans isomerases that are known in Bacillus subtilis. Both enzymes catalyze the in vitro refolding of ribonuclease T1, a reaction that is limited in rate by a prolyl cis/trans isomerization. The efficiency of cyclophilin as a folding catalyst is only modest with a kcat/KM value of 3.8 x 10(4) M-1 s-1, but the trigger factor shows an almost 40-fold higher specific activity with a kcat/KM value of 1.4 x 10(6) M-1 s-1. This high catalytic activity originates from the tight binding to the protein substrate as reflected in both the low KM value of 0.5 microM and in the strong inhibition of the trigger factor by unfolded proteins. By use of a protein-folding assay, the concentrations of cyclophilin and the trigger factor in the cytosol of B. subtilis could be determined as 26 and 35 microM, respectively. Together they account for the entire folding activity that is detectable in crude extracts of wild-type B. subtilis cells. The genes encoding cyclophilin and the trigger factor in the B. subtilis chromosome were disrupted individually and simultaneously. Even in combination, these disruptions had no effect on cell viability in rich medium or under several stress conditions, such as heat, osmotic, or oxidative stress. However, in poor medium and, in particular, in the absence of amino acids, the growth of the double mutant strain was strongly decelerated, indicating that the prolyl isomerases become essential for growth under starvation conditions. It is not yet known whether this function relates to the catalysis of the proline-limited folding of essential proteins.  相似文献   

5.
The rnc gene of Bacillus subtilis, which has 36% amino acid identity with the gene that encodes Escherichia coli RNase III endonuclease, was cloned in E. coli and shown by functional assays to encode B. subtilis RNase III (Bs-RNase III). The cloned B. subtilis rnc gene could complement an E. coli rnc strain that is deficient in rRNA processing, suggesting that Bs-RNase III is involved in rRNA processing in B. subtilis. Attempts to construct a B. subtilis rnc null mutant were unsuccessful, but a strain was constructed in which only a carboxy-terminal truncated version of Bs-RNase III was expressed. The truncated Bs-RNase III showed virtually no activity in vitro but was active in vivo. Analysis of expression of a copy of the rnc gene integrated at the amy locus and transcribed from a p(spac) promoter suggested that expression of the B. subtilis rnc is under regulatory control.  相似文献   

6.
Microtubule nucleation in vivo requires gamma-tubulin, a highly conserved component of microtubule-organizing centers. In Drosophila melanogaster there are two gamma-tubulin genes, gammaTUB23C and gammaTUB37C. Here we report the cytological and molecular characterization of the 37C isoform. By Western blotting, this protein can only be detected in ovaries and embryos. Antibodies against this isoform predominantly label the centrosomes in embryos from early cleavage divisions until cycle 15, but fail to reveal any particular localization of gamma-tubulin in the developing egg chambers. The loss of function of this gene results in female sterility and has no effect on viability or male fertility. Early stages of oogenesis are unaffected by mutations in this gene, as judged both by morphological criteria and by localization of reporter genes, but the female meiotic spindle is extremely disrupted. Nuclear proliferation within the eggs laid by mutant females is also impaired. We conclude that the expression of the 37C gamma-tubulin isoform of D. melanogaster is under strict developmental regulation and that the organization of the female meiotic spindle requires gamma-tubulin.  相似文献   

7.
The Drosophila mei-S332 and ord gene products are essential for proper sister-chromatid cohesion during meiosis in both males and females. We have constructed flies that contain null mutations for both genes. Double-mutant flies are viable and fertile. Therefore, the lack of an essential role for either gene in mitotic cohesion cannot be explained by compensatory activity of the two proteins during mitotic divisions. Analysis of sex chromosome segregation in the double mutant indicates that ord is epistatic to mei-S332. We demonstrate that ord is not required for MEI-S332 protein to localize to meiotic centromeres. Although overexpression of either protein in a wild-type background does not interfere with normal meiotic chromosome segregation, extra ORD+ protein in mei-S332 mutant males enhances nondisjunction at meiosis II. Our results suggest that a balance between the activity of mei-S332 and ord is required for proper regulation of meiotic cohesion and demonstrate that additional proteins must be functioning to ensure mitotic sister-chromatid cohesion.  相似文献   

8.
9.
The subunit f of the yeast F1F0ATP synthase has been isolated from the purified enzyme. Amino acid composition, protein and peptide sequencing were performed. The data are in agreement with the sequence of the predicted product of the gene D9481.21 identified on the Saccharomyces cerevisiae chromosome IV. A 303-bp open reading frame encoding a 101-amino acid polypeptide is described. The deduced amino acid sequence from the ATP17 gene is 6 amino acids longer than the mature protein, which displays a molecular mass of 10567 Da. The protein is basic with a short hydrophobic segment located in the C-terminal part of the subunit. Subunit f remained associated with other F0 subunits upon sodium bromide treatment of the whole enzyme. A null mutant was constructed. The disrupted strain was unable to grow on glycerol medium and the mutation was recessive; rho- cells arose spontaneously. The null mutant mitochondria were devoid of oligomycin-sensitive ATPase, but still contained an active F1, while the subunits f, 6 and 8 were absent.  相似文献   

10.
11.
An Escherichia coli strain carrying either the secAcsR11 or delta secG::kan mutation is unable to grow at low temperature owing to cold-sensitive protein translocation but grows normally at 37 degree C. However, introduction of the two mutations into the same cells caused a severe defect in protein translocation and the cells were unable to grow at any temperature examined, indicating that secG is essential for the secAcsR11 mutant. The mutant SecA (csSecA) was found to possess a single amino acid substitution in the precursor-binding region and was defective in the interaction with the precursor protein. Furthermore, the membrane insertion of SecA and the membrane topology inversion of SecG, both of which took place upon the initiation of protein translocation, were significantly retarded even at 37 degree C, when csSecA was used instead of the wild-type SecA. The insertion of the wild-type SecA was also significantly defective when SecG-depleted membrane vesicles were used in place of SecG-containing ones. No insertion of csSecA occurred into SecG-depleted membrane vesicles. Examination of in vitro protein translocation at 37 degree C revealed that SecG is essential for csSecA-dependent protein translocation. We conclude that SecG and SecA undergo a coupled structure change, that is critical for efficient protein translocation.  相似文献   

12.
Critical steps implicated in the polymorphism of Wangiella dermatitidis were found to be sensitive to calcium ion availability. When grown in a defined, synthetic medium under various pH and temperature conditions, two thresholds of calcium ion concentrations were identified: a lower concentration favouring non-polarized growth leading to multicellular form development and a higher concentration promoting polarized growth characterized by yeast budding or pseudo/true hyphal growth. The phenotypic transition of yeasts to multicellular forms or to hyphae was induced at both 25 and 37 degrees C in the wild-type strain by the addition of calcium to the synthetic medium adjusted to pH 2.5, which was otherwise not conducive to the production of either growth form. However, the calcium additions did not allow maintenance of polarized growth of yeasts or hyphae in a temperature-sensitive, cell-division-cycle mutant (wdcdc2) derived from the same strain and grown at 37 degrees C in the same medium adjusted to either pH 2.5 or 6.5. Instead these conditions allowed only the nonpolarized, multicellular form development associated with this conditional mutant cultured in rich media at the 37 degree C restrictive temperature for yeast bud formation. Results from experiments using the calcium chelator EGTA added to the synthetic medium supported these conclusions at neutral pH with both the wild type and the wdcdc2 mutant cultured at 37 degrees C. The results suggested that during infection different concentrations of calcium may be encountered by W. dermatitidis in different tissues, which might directly regulate its growth and polymorphism and indirectly its virulence depending on host conditions.  相似文献   

13.
The ord gene is required for proper segregation of all chromosomes in both male and female Drosophila meiosis. Here we describe the isolation of a null ord allele and examine the consequences of ablating ord function. Cytologically, meiotic sister-chromatid cohesion is severely disrupted in flies lacking ORD protein. Moreover, the frequency of missegregation in genetic tests is consistent with random segregation of chromosomes through both meiotic divisions, suggesting that sister cohesion may be completely abolished. However, only a slight decrease in viability is observed for ord null flies, indicating that ORD function is not essential for cohesion during somatic mitosis. In addition, we do not observe perturbation of germ-line mitotic divisions in flies lacking ORD activity. Our analysis of weaker ord alleles suggests that ORD is required for proper centromeric cohesion after arm cohesion is released at the metaphase I/anaphase I transition. Finally, although meiotic cohesion is abolished in the ord null fly, chromosome loss is not appreciable. Therefore, ORD activity appears to promote centromeric cohesion during meiosis II but is not essential for kinetochore function during anaphase.  相似文献   

14.
Microtubule-dependent motor, murine KIF3B, was disrupted by gene targeting. The null mutants did not survive beyond midgestation, exhibiting growth retardation, pericardial sac ballooning, and neural tube disorganization. Prominently, the left-right asymmetry was randomized in the heart loop and the direction of embryonic turning. lefty-2 expression was either bilateral or absent. Furthermore, the node lacked monocilia while the basal bodies were present. Immunocytochemistry revealed KIF3B localization in wild-type nodal cilia. Video microscopy showed that these cilia were motile and generated a leftward flow. These data suggest that KIF3B is essential for the left-right determination through intraciliary transportation of materials for ciliogenesis of motile primary cilia that could produce a gradient of putative morphogen along the left-right axis in the node.  相似文献   

15.
The partition system of the P1 plasmid, P1par, consists of the ParA and ParB proteins and a cis-acting site, parS. It is responsible for the orderly segregation of plasmid copies to daughter cells. Plasmids with null mutations in parA or parB replicate normally, but missegregate. ParB binds specifically to the parS site, but the role of ParA and its ATPase activity in partition is unclear. We describe a novel class of parA mutants that cannot be established or maintained as plasmids unless complemented by the wild-type gene. One, parAM314l, is conditional: it can be maintained in cells in minimal medium but cannot be established in cells growing in L broth. The lack of plasmid propagation in L broth-grown cells was shown to be caused by a ParB-dependent activity of the mutant ParA protein that blocks plasmid propagation by an interaction at the parS site. Thus, ParA acts to modify the ParB-parS complex, probably by binding to it. Partition is thought to involve selection of pairs of plasmids before segregation, either by physical pairing of copies or by binding of copies to paired host sites. We suggest that ParA is involved in this reaction and that the mutant ParA protein forms paired complexes that cannot unpair.  相似文献   

16.
17.
The ability of Bvg(-)-phase and Bvg(+)-phase Bordetella bronchiseptica swine isolates, grown under modulating or nonmodulating conditions, to adhere to swine ciliated nasal epithelial cells was determined. When virulent strains were cultivated at 37 degrees C in the Bvg+ phase, numerous adherent bacteria (approximately eight per cell, depending on the strain used) were observed. However, when such strains were grown under modulating conditions (23 degrees C), a significant increase in the level of attachment was seen, suggesting that B. bronchiseptica produces a Bvg-repressed adhesin under these conditions. bvg mutant strains, including an isogenic bvgS mutant, adhered minimally. Western blots indicated that two putative B. bronchiseptica adhesins, filamentous hemagglutinin and pertactin, were not detectable in cultures displaying the highly adherent phenotype. Several proteins apparent in Western blots obtained by using bacterial extracts enriched in outer membrane proteins derived from B. bronchiseptica grown at 23 degrees C were not present in similar extracts prepared from an isogenic bvgS mutant grown at 23 degrees C or from the parent strain grown at 37 degrees C. Adherence of bacteria cultivated at 23 degrees C was almost completely abolished by pretreatment of organisms at 60 degrees C; adherence was reduced by 57% when bacteria were pretreated with pronase E. Temperature shift experiments revealed that the heightened level of adhesion that occurs following growth at 23 degrees C was maintained for up to 18 h when bacteria were subsequently incubated at 37 degrees C. We propose that a Bvg-repressed adhesin, expressed only by modulated bvg+ strains of B. bronchiseptica, may play a key role in the initial colonization of naturally infected swine.  相似文献   

18.
Polyomavirus transforms cells in culture and induces tumors in mice without apparent interaction with or inactivation of the p53 tumor suppressor protein. In this report we investigate the ability of polyomavirus T antigens to overcome the growth suppression function of p53. A temperature sensitive p53 gene was introduced into mouse embryo fibroblasts derived from a p53 null mouse, resulting in expression of a protein with a mutant conformation at 37 degrees C and a functionally wild-type conformation at 32 degrees C. We found that expression of p53 at 32 degrees C induced the cyclin-dependent kinase inhibitor p21/WAF1 and arrested cell growth in the G1/G0 phase of the cell cycle. Only the under-phosphorylated form of the retinoblastoma tumor suppressor protein (pRB) was detected in these growth arrested cells. We introduced both polyomavirus large T (LT) and middle T (MT) antigens into this cell line and showed that LT overcame p53-dependent growth arrest, while MT did not. In cells grown at 32 degrees C, LT expession led to cell proliferation and phosphorylation of pRB in the presence of p21. A mutant LT containing a defective pRB binding domain failed to overcome the growth arrest, indicating that interaction of LT with RB proteins is required to override p53 function. Although the polyomavirus T antigens do not interact with p53 directly, our results indicate that the virus, through LT, is able to interfere with the growth suppressive activity of p53.  相似文献   

19.
In the fission yeast Schizosaccharomyces pombe, the cdc11 gene is required for the initiation of septum formation at the end of mitosis. The sce3 gene was cloned as a multi-copy suppressor of the heat-sensitive mutant cdc11-136. When over-expressed, it rescues all mutants of cdc11 and also a heat-sensitive allele of cdc14, but not the cdc14 null mutant. Deletion shows that sce3 is not essential for cell proliferation. It encodes a putative RNA-binding protein which shows homology to human eIF4B. Immunolocalisation indicates that Sce3p is located predominantly in the cytoplasm. Elevated expression of sce3 increases the steady-state level of cdc14 mRNA. Possible mechanisms of its action are discussed.  相似文献   

20.
Elongation factor P (EFP) is a protein that stimulates the peptidyltransferase activity of fully assembled 70 S prokaryotic ribosomes and enhances the synthesis of certain dipeptides initiated by N-formylmethionine. This reaction appears conserved throughout species and is promoted in eukaryotic cells by a homologous protein, eIF5A. Here we ask whether the Escherichia coli gene encoding EFP is essential for cell viability. A kanamycin resistance (KanR) gene was inserted near the N-terminal end of the efp gene and was cloned into a plasmid, pMAK705, that has a temperature-sensitive origin of replication. After transformation into a recA+ E. coli strain, temperature-sensitive mutants were isolated, and their chromosomal DNA was sequenced. Mutants containing the efp-KanR gene in the chromosome grew at 33 degrees C only in the presence of the wild-type copy of the efp gene in the pMAK705 plasmid and were unable to grow at 44 degrees C. Incorporation of various isotopes in vivo suggests that translation is impaired in the efp mutant at 44 degrees C. At 44 degrees C, mutant cells are severely defective in peptide-bond formation. We conclude that the efp gene is essential for cell viability and is required for protein synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号