首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
水丽  胡壮麒 《工程科学学报》2010,32(11):1459-1463,1488
研究了一种[001]取向镍基单晶合金的蠕变特征和变形期间的微观组织结构.结果表明:在低温高应力和高温低应力条件下,合金具有较长的蠕变寿命和较低的稳态蠕变速率;在700℃,720MPa条件下,透射电镜(TEM)观察显示蠕变期间的变形特征是$\\frac{1}{2}研究了一种[001]取向镍基单晶合金的蠕变特征和变形期间的微观组织结构.结果表明:在低温高应力和高温低应力条件下,合金具有较长的蠕变寿命和较低的稳态蠕变速率;在700℃,720MPa条件下,透射电镜(TEM)观察显示蠕变期间的变形特征是1/2110位错在基体中运动,发生反应形成1/3112超肖克利(Shockley)不全位错,切入γ′相后产生层错.在900℃,450MPa条件下,没有出现蠕变初始阶段,γ′相从立方体形态演化成筏形;在加速蠕变阶段,多系滑移开动,大量位错剪切γ′相是变形的主要机制.在1070℃,150MPa条件下,γ′相逐渐转变成筏形组织,并在γ/γ′界面处形成致密的六边形位错网,位错网可以阻止位错切入γ′相,提高蠕变抗力;在蠕变后期,位错以位错对形式切入γ′相,是合金变形的主要方式.  相似文献   

2.
通过测定一种单晶镍基合金的高温拉伸蠕变曲线及位错运动的内摩擦应力σ0,建立了综合蠕变方程,计算出稳态蠕变期间的表观蠕变激活能及相关参数.结果表明:在蠕变期间,位错运动的内摩擦应力σ0,随外加应力的提高略有提高,随温度的升高而明显降低.蠕变后期,由于缩径使样品不同位置承受不同的有效的应力,导致筏状γ'相具有不同的粗化特征,在近断口处,载荷的有效应力增大,使筏状γ'相扭曲且粗化加剧.界面位错网对形变硬化和回复软化具有协调作用,并减缓位错切入γ'相,因此有利于合金蠕变抗力的提高.  相似文献   

3.
通过对一种含2%Ru镍基单晶高温合金高温低应力及中温高应力条件下的蠕变性能测试和组织形貌观察,研究固溶温度对合金蠕变性能的影响。结果表明,铸态合金的成分偏析较严重,组织结构不均匀,在初熔温度以下,逐步提高固溶温度可以较大幅度地提高合金的高温和中温蠕变性能,蠕变时间增幅分别为63.7%、40.3%。测定合金在高温/低应力条件下的蠕变激活能493.4 kJ/mol,应力指数4.1。表明合金在高温低应力条件下的蠕变变形机制是位错在基体通道中滑移和位错攀移越过γ'相。  相似文献   

4.
通过测定一种单晶镍基高温合金的高温拉伸蠕变曲线和位错运动的内摩擦应力σ0,建立了综合蠕变方程,计算出不同蠕变阶段的激活能和相关参数.结果表明在蠕变期间,内摩擦应力σ0随外加应力σ的增加而略有提高,但随温度升高而明显下降.在实验温度和应力范围内,在不同蠕变阶段,具有不同的激活能Q,时间指数m和结构常数Bi.因此,合金在不同蠕变阶段具有不同的蠕变机制.蠕变初期,形变机制是位错在基体通道中运动;而大量位错切入筏状γ'相中是蠕变第3阶段的主要特征,在γ'/γ两相界面产生空洞及空洞的聚集和微裂纹扩展是蠕变断裂的直接原因.  相似文献   

5.
研究TA15钛合金在500~525℃下的高温蠕变行为,实验应力为250~350 MPa。计算合金在不同应力、不同温度下的稳态蠕变速率和应力指数以及蠕变激活能,并通过引入临界应力的概念对稳态蠕变的Arrhenius方程式进行修正,得出不同温度下的临界应力以及合金的真实蠕变应力指数,在此基础上研究其蠕变变形机制。研究结果表明,蠕变应力为350 MPa时,合金的蠕变激活能appQ=403.1 kJ/mol;500℃和600℃下,TA15合金的蠕变临界应力0?值分别为82.15 MPa和34.79 MPa;500℃,TA15合金的真实蠕变应力指数P值为1.7~4.3,600℃时,合金的P值为4.0~6.0;在实验温度和应力范围内,位错的攀移和滑移在TA15合金蠕变变形过程中的作用很大,其中以位错攀移为主,位错滑移为辅。  相似文献   

6.
抗热腐蚀高温合金的蠕变组织及其转变   总被引:1,自引:0,他引:1  
研究了一种新型铸造高温合金K44在高温拉伸蠕变实验中的组织转变.通过光学及电子显微镜观察了合金的铸态组织及高温蠕变过程中不同阶段的组织特征;重点探讨了合金中γ'相的沉淀筏形化、定向粗化及位错与其交互作用.结果表明,多晶高温合金中γ'相的筏形化方向与内应力有关;位错与γ'相的相互作用使加速蠕变阶段较长.蠕变过程中,碳化物形状由骨架状分散为条片状,共晶胞界处γ'相沉淀析出球状γ相;沿着拉伸应力轴方向,从试样根部到断口,滑移系开动数量增多,γ'相的变形越来越大.  相似文献   

7.
研究Mg-9Gd-3Y-0.3Zr合金在不同温度(200~300℃)和应力(30~110MPa)条件下的蠕变行为,利用金相显微镜、透射电镜等分析蠕变过程中合金组织的演变。结果表明:温度较低时(200~250℃),蠕变曲线分为瞬时和稳态蠕变两部分,利用Arrhenius公式计算出合金的平均应力指数n=2,由此判断蠕变机制是晶界滑移机制,平均蠕变激活能Q=85.6kJ/mol;当温度为300℃时,合金经过短暂的瞬时蠕变和稳态蠕变阶段后,很快进入断裂阶段。n=4.2,蠕变机制为位错攀移机制,Q=145.5 kJ/mol。在温度较低时,稀土元素所形成的析出相β¢相阻碍位错的运动,从而提高合金的抗蠕变能力;随蠕变温度升高,析出相转变为β相,在晶界处聚集长大,使晶界处易产生应力集中,促使孔洞的形成,导致合金发生蠕变断裂。  相似文献   

8.
通过Gleeble3500型热模拟机上的恒温恒应力压缩试验,研究了成分为Nb-22.5Cr-2.5Mo(%,原子分数)的Nb-Cr-Mo合金的高温蠕变行为。结果表明:Nb-Cr-Mo合金的稳态蠕变速率随应力的增加和变形温度的升高而加快, 1000℃和200 MPa条件下, Nb-Cr-Mo合金的稳态蠕变速率为5.3×10~(-5) s~(-1)。随着变形温度的升高, Nb基体中位错运动阻力减小,在温度和外力的作用下,有形成亚晶的趋势;随着变形温度的升高, Nb/NbCr_2两相颗粒间由于热膨胀系数不匹配和弹性模量之间的差异所导致的界面压应力进一步加大,从而促使Laves相颗粒中更多原子的相对运动,使得同步剪切机制更加明显,组织中的层错/孪晶结构密度明显增加,合金的蠕变抗力明显降低。蠕变变形过程中, Nb基体中位错的滑移、攀移,多边形化和Laves相NbCr_2中的同步剪切是Nb-Cr-Mo合金蠕变变形的主要方式。相对于未合金化的Nb-22.5 Cr合金,由于Mo对Nb基体的固溶强化,在基体中产生了柯氏气团钉扎位错,提高了合金的抗蠕变能力。  相似文献   

9.
采用d电子理论(Md法)和电子空穴(Nv法)的合金设计方法,利用定向凝固技术制备一种含大量W、Mo难溶元素,含4%Ru的镍基单晶高温合金,并对其进行高温蠕变性能测试及组织形貌观察。结果表明,合金经完全热处理后,γ'相以共格方式镶嵌在γ基体中,尺寸约为0.4μm,可以看到合金无TCP相(拓扑密排相)析出。在137MPa、1020℃条件下,其蠕变寿命为315h,较DD403高温合金蠕变寿命提高31.8%,蠕变伸长量提高13.0%。合金在高温蠕变期间γ'相形成筏状结构,随蠕变进行,筏状结构扭曲并发生断裂,直至形成宏观裂纹,最终导致试件断裂,这是镍基单晶高温合金的断裂机制。  相似文献   

10.
研究了M963合金在975℃×225MPa条件下蠕变过程中的组织演化及断裂机理.结果表明M963合金的蠕变曲线呈现出明显的3个阶段且稳态蠕变速率较低;蠕变过程中,γ'相粒子逐渐筏形化,由初始阶段分布在γ基体中的立方状孤立相转变为蠕变后期包围γ相的连续相;在枝晶干上有颗粒状M6C碳化物析出;蠕变变形机制从初始阶段的Orowan绕过γ'相粒子变为蠕变后期的位错切过γ'相粒子.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号