首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The coupling of matrix-assisted laser desorption/ionization (MALDI) to Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) provides an exceptionally capable platform for peptide analysis, but an important limitation of this approach is the difficulty in obtaining informative tandem mass spectra (MS/MS) of singly protonated peptides. This difficulty is especially pronounced with peptide ions containing basic amino acid residues (for example, tryptic peptides). While such ions can be fragmented in some instrument configurations, most FTICR instruments have comparatively little facility for high-energy fragmentation. Here, a novel MS/MS approach implemented with MALDI-FTICR-MS and specifically intended for enhanced fragmentation of singly protonated peptides is described. The method involves infrared irradiation in concert with the simultaneous application of sustained off-resonance irradiation collision-induced dissociation (SORI-CID). This form of MS/MS, described as a combination of infrared and collisional activation (CIRCA), is shown to provide a greater capacity for dissociation of singly charged model peptide ions as compared to infrared multiphoton dissociation (IRMPD) or SORI-CID alone. Overall, the CIRCA approach is demonstrated to be a feasible technique for accessing useful fragmentation pathways of singly charged peptides, including those harboring basic amino acid residues--a crucial feature in the context of proteomics.  相似文献   

2.
Ultrasensitive nanoscale proteomics approaches for characterizing proteins from complex proteomic samples of <50 ng of total mass are described. Protein identifications from 0.5 pg of whole proteome extracts were enabled by ultrahigh sensitivity (<75 zmol for individual proteins) achieved using high-efficiency (peak capacities of approximately 10(3)) 15-microm-i.d. capillary liquid chromatography separations (i.e., using nanoLC, approximately 20 nL/min mobile-phase flow rate at the optimal linear velocity of approximately 0.2 cm/s) coupled on-line with a micro-solid-phase sample extraction and a nanoscale electrospray ionization interface to a 11.4-T Fourier transform ion cyclotron resonance (FTICR) mass spectrometer (MS). Proteome measurement coverage improved as sample size was increased from as little as 0.5 pg of sample. It was found that a 2.5-ng sample provided 14% coverage of all annotated open reading frames for the microorganism Deinococcus radiodurans, consistent with previous results for a specific culture condition. The estimated detection dynamic range for detected proteins was 10(5)-10(6). An improved accurate mass and LC elution time two-dimensional data analysis methodology, used to both speed and increase the confidence of peptide/protein identifications, enabled identification of 872 proteins/run from a single 3-h nanoLC/FTICR MS analysis. The low-zeptomole-level sensitivity provides a basis for extending proteomics studies to smaller cell populations and potentially to a single mammalian cell. Application with ion trap MS/MS instrumentation allowed protein identification from 50 pg (total mass) of proteomic samples (i.e., approximately 100 times larger than FTICR MS), corresponding to a sensitivity of approximately 7 amol for individual proteins. Compared with single-stage FTICR measurements, ion trap MS/MS provided a much lower proteome measurement coverage and dynamic range for a given analysis time and sample quantity.  相似文献   

3.
SELDI-TOF MS for diagnostic proteomics   总被引:28,自引:0,他引:28  
  相似文献   

4.
The aim of the work was to explore usefulness of artificial neural network (ANN) analysis for the evaluation of proteomics data. The analysis was applied to the data generated by the widely used protein identification program Sequest, completed with several structural parameters readily calculated from peptide molecular formulas. Proteins from yeast cells were identified based on the MS/MS spectra of peptides. The constructed ANN was demonstrated to classify automatically as either "good" or "bad" the peptide MS/MS spectra otherwise classified manually. An appropriately trained ANN proves to be a high-throughput tool facilitating examination of Sequest's results. ANNs are recommended as a means of automatic processing of large amounts of MS/MS data, which normally must be considered in the analysis of complex mixtures of proteins in proteomics.  相似文献   

5.
LC-MS/MS-based proteomics studies rely on stable analytical system performance that can be evaluated by objective criteria. The National Institute of Standards and Technology (NIST) introduced the MSQC software to compute diverse metrics from experimental LC-MS/MS data, enabling quality analysis and quality control (QA/QC) of proteomics instrumentation. In practice, however, several attributes of the MSQC software prevent its use for routine instrument monitoring. Here, we present QuaMeter, an open-source tool that improves MSQC in several aspects. QuaMeter can directly read raw data from instruments manufactured by different vendors. The software can work with a wide variety of peptide identification software for improved reliability and flexibility. Finally, QC metrics implemented in QuaMeter are rigorously defined and tested. The source code and binary versions of QuaMeter are available under Apache 2.0 License at http://fenchurch.mc.vanderbilt.edu.  相似文献   

6.
An ion trap/ion mobility/quadrupole/collision cell/time-of-flight mass spectrometer that incorporates a differentially pumped orifice-skimmer cone region at the back of the drift tube has been developed for the analysis of peptide mixtures. The combined approach allows a variety of strategies to be employed for collisionally activating ions, and fragments can be monitored by subsequent stages of mass spectrometry in a parallel fashion, as described previously (Anal. Chem. 2000, 72, 2737). Here, we describe the overall experimental approach in detail. Applications involving different aspects of the initial mobility separation and various collisional activation and parallel sequencing strategies are illustrated by examining several simple peptide mixtures and a mixture of tryptic peptides from beta-casein. Detection limits associated with various experimental configurations and the utility for analysis of complex systems are discussed.  相似文献   

7.
We investigated and compared three approaches for shotgun protein identification by combining MS and MS/MS information using LTQ-Orbitrap high mass accuracy data. In the first approach, we employed a unique mass identifier method where MS peaks matched to peptides predicted from proteins identified from an MS/MS database search are first subtracted before using the MS peaks as unique mass identifiers for protein identification. In the second method, we used an accurate mass and time tag method by building a potential mass and retention time database from previous MudPIT analyses. For the third method, we used a peptide mass fingerprinting-like approach in combination with a randomized database for protein identification. We show that we can improve protein identification sensitivity for low-abundance proteins by combining MS and MS/MS information. Furthermore, "one-hit wonders" from MS/MS database searching can be further substantiated by MS information and the approach improves the identification of low-abundance proteins. The advantages and disadvantages for the three approaches are then discussed.  相似文献   

8.
Winnik WM 《Analytical chemistry》2005,77(15):4991-4998
Tryptic digests of human serum albumin and human lung epithelial cell lysates were used as test samples in a novel proteomics study. Peptides were separated and analyzed using 2D-nano-LC/MS/MS with strong cation exchange (SCX) and reversed-phase chromatography and continuous gradient elution. The peptide elution conditions combined simultaneous pH gradient with ammonium acetate salt gradient elution modes. A novel empirical SCX peptide elution score was developed, which accounts for both the number of basic and acidic residues and, in part, their location within a sequence of a peptide. Average scores calculated for the fractionated peptide sequences correlated well with the pH of SCX elution fractions. Multiple peptides with identical amino acid sequences, but differing in cysteine tags possessing different positive charge and different SCX elution properties, were obtained by subjecting the samples to reduction and alkylation with different cysteine alkylating reagents: iodoacetamide, 4-vinylpyridine, and (3-acrylamidopropyl) trimethylammonium chloride. The structurally similar peptides were used as elution standards.  相似文献   

9.
A widespread proteomics procedure for characterizing a complex mixture of proteins combines tandem mass spectrometry and database search software to yield mass spectra with identified peptide sequences. The same peptides are often detected in multiple experiments, and once they have been identified, the respective spectra can be used for future identifications. We present a method for collecting previously identified tandem mass spectra into a reference library that is used to identify new spectra. Query spectra are compared to references in the library to find the ones that are most similar. A dot product metric is used to measure the degree of similarity. With our largest library, the search of a query set finds 91% of the spectrum identifications and 93.7% of the protein identifications that could be made with a SEQUEST database search. A second experiment demonstrates that queries acquired on an LCQ ion trap mass spectrometer can be identified with a library of references acquired on an LTQ ion trap mass spectrometer. The dot product similarity score provides good separation of correct and incorrect identifications.  相似文献   

10.
Although it is now feasible to compute multi-cellular models of the heart on a personal desktop or laptop computer, it is not feasible to undertake the detailed sweeps of high-dimensional parameter spaces required if we are to undertake in silico experimentation of the complex processes that constitute heart disease. For this research, modelling requirements move rapidly beyond the limit of commodity computers' resource both in terms of their memory footprint and the speed of calculation, so that multi-processor architectures must be considered. In addition, as such models have become more mature and have been validated against experimental data, there is increasing pressure for experimentalists to be able to make use of these models themselves as a key tool for hypothesis formulation and in planning future experimental studies to test those hypotheses.This paper discusses our initial experiences in a large-scale project (the Integrative Biology (IB) e-Science project) aimed at meeting these dual aims. We begin by putting the research in context by describing in outline the overall aims of the IB project, in particular focusing on the challenge of enabling novice users to make full use of high-performance resources without the need to gain detailed technical expertise in computing. We then discuss our experience of adapting one particular heart modelling package, Cellular Open Resource, and show how the solving engine of this code was dissected from the rest of the package, ported to C++ and parallelized using the Message-Passing Interface. We show that good parallel efficiency and realistic memory reduction can be achieved on simple geometries. We conclude by discussing lessons learnt in this process.  相似文献   

11.
12.
We describe approaches for proteomics analysis using electrospray ionization-tandem mass spectrometry coupled with fast reversed-phase liquid chromatography (RPLC) separations. The RPLC separations used 50-microm-i.d. fused-silica capillaries packed with submicrometer-sized C18-bonded porous silica particles and achieved peak capacities of 130-420 for analytes from proteome tryptic digests. When these separations were combined with linear ion trap tandem mass spectrometry measurements, approximately 1000 proteins could be identified in 50 min from approximately 4000 identified tryptic peptides; approximately 550 proteins in 20 min from approximately 1800 peptides; and approximately 250 proteins in 8 min from approximately 700 peptides for a S. oneidensis tryptic digest. The dynamic range for protein identification with the fast separations was determined to be approximately 3-4 orders of magnitude of relative protein abundance on the basis of known proteins in human blood plasma analyses. We found that 55% of the MS/MS spectra acquired during the entire analysis (and up to 100% of the MS/MS spectra acquired from the most data-rich zone) provided sufficient quality for identifying peptides. The results confirm that such analyses using very fast (minutes) RPLC separations based on columns packed with microsized porous particles are primarily limited by the MS/MS analysis speed.  相似文献   

13.
Silica-based monolithic capillary columns (25 cm x 10 microm i.d.) with integrated nanoESI emitters have been developed to provide high-quality and robust microSPE-nanoLC-ESI-MS analyses. The integrated nanoESI emitter adds no dead volume to the LC separation, allowing stable electrospray operation at flow rates of approximately 10 nL/min. In an initial application with a linear ion trap MS, we identified 5510 unique peptides that covered 1443 distinct Shewanella oneidensis proteins from a 300-ng tryptic digest sample in a single 4-h LC-MS/MS analysis. The use of an integrated monolithic ESI emitter provided enhanced resistance to clogging and provided good run-to-run reproducibility.  相似文献   

14.
Proteomics analysis based-on reversed-phase liquid chromatography (RPLC) is widely practiced; however, variations providing cutting-edge RPLC performance have generally not been adopted even though their benefits are well established. Here, we describe an automated format 20 kpsi RPLC system for proteomics and metabolomics that includes on-line coupling of micro-solid phase extraction for sample loading and allows electrospray ionization emitters to be readily replaced. The system uses 50 microm i.d. x 40-200 cm fused-silica capillaries packed with 1.4-3-microm porous C18-bonded silica particles to obtain chromatographic peak capacities of 1000-1500 for complex peptide and metabolite mixtures. This separation quality provided high-confidence identifications of >12 000 different tryptic peptides from >2000 distinct Shewanella oneidensis proteins (approximately 40% of the proteins predicted for the S. oneidensis proteome) in a single 12-h ion trap tandem mass spectrometry (MS/MS) analysis. The protein identification reproducibility approached 90% between replicate experiments. The average protein MS/MS identification rate exceeded 10 proteins/min, and 1207 proteins were identified in 120 min through assignment of 5944 different peptides. The proteomic analysis dynamic range of the 20 kpsi RPLC-ion trap MS/MS was approximately 10(6) based on analyses of a human blood plasma sample, for which 835 distinct proteins were identified with high confidence in a single 12-h run. A single run of the 20 kpsi RPLC-accurate mass MS detected >5000 different compounds from a metabolomics sample.  相似文献   

15.
16.
We have mounted a permanent on-axis dispenser cathode electron source inside the magnet bore of a 9.4-T Fourier transform ion cyclotron resonance mass spectrometer. This configuration allows electron capture dissociation (ECD) to be performed reliably on a millisecond time scale. We have also implemented an off-axis laser geometry that enables simultaneous access to ECD and infrared multiphoton dissociation (IRMPD). Optimum performance of both fragmentation techniques is maintained. The analytical utility of performing either ECD or IRMPD on a given precursor ion population is demonstrated by structural characterization of several posttranslationally modified peptides: IRMPD of phosphorylated peptides results in few backbone (b- and y-type) cleavages, and product ion spectra are dominated by neutral loss of H3PO4. In contrast, ECD provides significantly more backbone (c- and z*-type) cleavages without loss of H3PO4. For N-glycosylated tryptic peptides, IRMPD causes extensive cleavage of the glycosidic bonds, providing structural information about the glycans. ECD cleaves all backbone bonds (except the N-terminal side of proline) in a 3-kDa glycopeptide with no saccharide loss. However, only a charge-reduced radical species and some side chain losses are observed following ECD of a 5-kDa glycopeptide from the same protein. An MS3 experiment involving IR laser irradiation of the charge-reduced species formed by electron capture results in extensive dissociation into c- and z-type fragment ions. Mass-selective external ion accumulation is essential for the structural characterization of these low-abundance (modified) peptides.  相似文献   

17.
Collisional activation of the intact MS2 viral capsid protein with subsequent ion/ion reactions has been used to identify the presence of this virus in E. coli lysates. Tandem ion trap mass spectrometry experiments on the +7, +8, and +9 charge states, followed by ion/ion reactions, provided the necessary sequence tag information (and molecular weight data) needed for protein identification via database searching. The most directly informative structural information is obtained from those charge states that produce a series of product ions arising from fragmentation at adjacent residues. The formation of these product ions via dissociation at adjacent amino acid residues depends greatly on the charge state of the parent ion. Database searching of the charge-state-specific sequence tags was performed by two different search engines: the ProteinInfo program from the Protein information Retrieval On-line World Wide Web Lab or PROWL and the TagIdent program from the ExPASy molecular biology server. These search engines were used in conjunction with the sequence tag information generated via collisional activation of the intact viral coat protein. These programs were used to evaluate the feasibility of generating sequence tags from collisional activation of intact multiply charged protein ions in a quadrupole ion trap.  相似文献   

18.
We propose to evaluate infrared lenses with a dedicated analyzer having the same mechanical interface as the usual cameras. The proposed analysis is based on a wavefront measurement and allows a diagnostic of possible internal defects of the analyzed lens. The infrared lens analyzer described is constituted with a quadriwave lateral shearing interferometer and works with a blackbody light. We describe the response of this interferometer and an innovative method to obtain the wavefront under test. We finally present the experimental analysis of long-wavelength infrared lenses and the particular case of a modified lens that generates a large spherical aberration.  相似文献   

19.
Proteomics is critically dependent on optimal sample preparation. Particularly, the interface between protein digestion and mass spectrometric analysis has a large influence on the overall quality and sensitivity of the analysis. We here describe a novel procedure in which a very small disk of beads embedded in a Teflon meshwork is placed as a microcolumn into pipet tips. Termed Stage, for STop And Go Extraction, the procedure has been implemented with commercially available material (C18 Empore Disks (3M, Minneapolis, MN)) as frit and separation material. The disk is introduced in a simple and fast process yielding a convenient and completely reliable procedure for the production of self-packed microcolumns in pipet tips. It is held in place free of obstacles solely by the narrowing tip, ensuring optimized loading and elution of analytes. Five disks are conveniently placed in 1 min, adding <0.1 cent in material costs to the price of each tip. The system allows fast loading with low backpressure (>300 micro/min for the packed column using manual force) while eliminating the possibility of blocking. The loading capacity of C18-StageTips (column bed: 0.4 mm diameter, 0.5 mm length) is 2-4 microg of protein digest, which can be increased by using larger diameter or stacked disks. Five femtomole of tryptic BSA digest could be recovered quantitatively. We have found that the Stage system is well-suited as a universal sample preparation system for proteomics.  相似文献   

20.
Cation transmission/electron-transfer reagent anion storage mode electron-transfer ion/ion reactions and beam-type collisional activation of the polypeptide ions are performed in rapid succession in the high-pressure collision cell (Q2) of a quadrupole/time-of-flight tandem mass spectrometer (QqTOF), where the electron-transfer reagent anions are accumulated. Duty cycles for both electron-transfer dissociation (ETD) and collision-induced dissociation (CID) experiments are improved relative to ion trapping approaches since there are no discrete ion storage and reaction steps for ETD experiments and no discrete ion storage step and frequency tuning for CID experiments. For this technique, moderately high resolution and mass accuracy are also obtained due to mass analysis via the TOF analyzer. This relatively simple approach has been demonstrated with a triply charged tryptic peptide, a triply charged tryptic phosphopeptide, and a triply charged tryptic N-linked glycopeptide. For the tryptic peptide, the sequence is identified with more certainty than would be available from a single method alone due to the complementary information provided by these two dissociation methods. Because of the complementary information derived from both ETD and CID dissociation methods, peptide sequence and post-translational modification (PTM) sites for the phosphopeptide are identified. This combined ETD and CID approach is particularly useful for characterizing glycopeptides because ETD generates information about both peptide sequence and locations of the glycosylation sites, whereas CID provides information about the glycan structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号