首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Radio Frequency (RF) CMOS is expected to replace bipolar and GaAs MESFETs in RF front-end ICs for mobile telecommunications devices in the near future. In order for the RF CMOS to be popularly used in this application, compatibility of its process for high-speed logic CMOS and low supply voltage operation are important for low fabrication cost and low power consumption. In this paper, a 0.15-μm RF CMOS technology compatible with logic CMOS for low-voltage operation is described. Because the fabrication process is the same as the high-speed logic CMOS, manufacturability of this technology is excellent. Some of the passive elements can be integrated without changing the process and others can be integrated with the addition of a few optional processes. Mixed RF and logic CMOS devices in a one-chip LSI can be realized with relatively low cost. Excellent high-frequency characteristics of small geometry silicon MOSFETs with low-power supply voltage are demonstrated. Cutoff frequency of 42 GHz of n-MOSFETs, which is almost the same level at that of general high-performance silicon bipolar transistors, was obtained. N-MOSFET's maintained enough high cutoff frequency of 32 GHz even at extremely low supply voltage of 0.5 V. Moreover, it was confirmed that degradation of minimum noise figure for deep submicron MOSFETs with 0.5 V operation is sufficiently small compared with 2.0 V operation. These excellent high-frequency characteristics of small geometry silicon MOSFETs under low-voltage operation are suitable for mobile telecommunications applications  相似文献   

2.
An ECL circuit with an active pull-down device, operated from a CMOS supply voltage, is described as a high-speed digital circuit for a 0.25-μm BiCMOS technology. A pair of ECL/CMOS level converters with built-in logic capability is presented for effective intermixing of ECL with CMOS circuits. Using a 2.5-V supply and a reduced-swing BiNMOS buffer, the ECL circuit has reduced power dissipation, while still providing good speed. A design example shows the implementation of complex logic by emitter and collector dottings and the selective use of ECL circuits to achieve high performance  相似文献   

3.
So far, CMOS has been shown to be capable of operating at radio-frequency (RF) frequencies, although the inadequacies of the device-level performance often have to be circumvented by innovations at the architectural level that tend to shift the burden to the circuit building blocks at lower frequencies, The RF front-end circuits presented in this paper show that excellent RF performance is feasible with 0.25-μm CMOS, even in terms of the requirements of the tried-and-true superheterodyne architecture. Design for low-noise and low-current consumption targeted for GSM handsets has been given particular attention in this paper. Low-noise amplifiers with sub-2-dB noise figures (NFs) and a double balanced mixer with 12.6 dB single-sideband NF, as well as sub-25-mA current consumption for the RF front end (complete receiver), are among the main achievements  相似文献   

4.
When a comprehensive fault model is considered, static CMOS VLSI has long been prohibited from realizing concurrent error detecting (CED) circuits due to the unique analog faults (bridging and stuck-on faults). In this paper, we present the design, fabrication and testing of an experimental chip containing the integration of a totally self-checking (TSC) Berger code checker and a strongly code disjoint (SCD) built-in current sensor (BICS). This chip was fabricated by MOSIS using 2 μm p-well CMOS technology. In chip tests, all implanted faults, including analog faults, were detected as expected. We also show that the self-exercising mechanism of the SCD BICS is indeed functioning properly. This is the first demonstration of a working static CMOS CED chip  相似文献   

5.
The feasibility of the smart voltage extension (SVX) technique featuring complementary high-voltage devices without any modifications of the process steps of an 0.5-μm standard CMOS technology is discussed here. This letter focuses on the optimization of the breakdown voltage of the HVNMOS as well as the possible implementation of the HVPMOS. Different high-voltage options with increasing process modification steps are discussed as a function of the required high-voltage capabilities  相似文献   

6.
Devices have been designed and fabricated in a CMOS technology with a nominal channel length of 0.15 μm and minimum channel length below 0.1 μm. In order to minimize short-channel effects (SCEs) down to channel lengths below 0.1 μm, highly nonuniform channel dopings (obtained by indium and antimony channel implants) and shallow source-drain extensions/halo (by In and Sb preamorphization and low-energy As and BF2 implant were used. Maximum high V DS threshold rolloff was 250 mV at effective channel length of 0.06 μm. For the minimum channel length of 0.1 μm, the loaded (FI=FO=3, C=240 fF) and unloaded delays were 150 and 25 ps, respectively  相似文献   

7.
This paper describes the design of a 1.9-GHz front-end receiver. The target application of the receiver is the personal communications standard PCS1900. Powered by a 1-V supply, the receiver consists of a low noise amplifier (LNA) and a downconversion mixer. The receiver was fabricated within a 0.5-μm CMOS technology. The LNA features 15 dB of gain and a 1.8-dB noise figure. The mixer exhibits 1.5-dB conversion loss, 12-dB noise figure, and 0 dBm 1 dB-compression point  相似文献   

8.
A circuit concept, level shifting, is presented for scaled BiCMOS circuits. A full-swing, ground-level-shifted (FS-GLS) BiCMOS circuit has shown approximately 1.6× speed improvement over a conventional partial-swing BiCMOS circuit, and a 4× better driving capability over a CMOS circuit at 3.3 V. With a high-performance p-n-p device, simulations show that the level-shifted complementary BiCMOS can provide further speed leverage over the BiCMOS circuit with n-p-n only  相似文献   

9.
A 0.3-μm mixed analog/digital CMOS technology for low-voltage operation has been demonstrated, including a new MOSFET structure with laterally doped buried layer (LDB) and a double-polysilicon capacitor with low voltage coefficient. The LDB-structure MOSFET provides constant threshold voltage which is independent of channel length, high current drivability 10% over that of a conventional structure, and low junction capacitance which is less than 1/2 that of the conventional structure. The double-polysilicon capacitor achieves a voltage coefficient of 1/10 that of a conventional capacitor by introducing arsenic ion implantation to the top polysilicon plate and a Si3N4 capacitor-insulator, despite the insulator thickness being scaled down to oxide-equivalent 20 nm  相似文献   

10.
A new cobalt (Co) salicide technology for sub-quarter micron CMOS transistors has been developed using high-temperature sputtering and in situ vacuum annealing. Sheet resistance of 11 Ω/□ for both gate electrode and diffusion layer was obtained with 5-nm-thick Co film. No line width dependence of sheet resistance was observed down to 0.15-μm-wide gate electrode and 0.33-μm-wide diffusion layer. The high temperature sputtering process led to the growth of epitaxial CoSi 2 layers with high thermal stability. By using this technology 0.15 μm CMOS devices which have shallow junctions were successfully fabricated  相似文献   

11.
A structure of dynamic CMOS logic based on the direct interconnection of p-channel logic and n-channel logic dynamic gates is reported. Prevention of glitches and other circuit problems are discussed. Application to a 16-bit parallel-adder design resulted in improved speed as well as important savings in layout area when compared to standard static design.  相似文献   

12.
Wave pipelining (also known as maximal rate pipelining) is a timing methodology used in digital systems to increase the number of effective pipelined stages without increasing the number of physical registers in the system. Using this technique, new data are applied to the inputs of a combinational block before the previous outputs are available, thus effectively pipelining the combinational logic. Achieving a high degree of wave pipelining in CMOS technology requires careful study of delay balancing technique involving circuit design, layout method, and testing structure. A 16-b parallel adder, utilizing wave pipelining is implemented with MOSIS 2-μm technology and test results of fabricated devices show more than nine times speedup over nonpipelined operation  相似文献   

13.
This paper reports the experimental results of the first CMOS active pixel image sensors (APS) fabricated using a high-performance 1.8-V, 0.25-μm CMOS logic technology. No process modifications were made to the CMOS logic technology so that the impact of device scaling on the image sensing performance can be studied. This paper highlights the device and process design considerations required to enable CMOS as an image sensor technology  相似文献   

14.
An algorithm for VLSI median filtering of one-dimensional signals of complexity linearly dependent on the filter window length is described. The algorithm is implemented as a bit-level systolic array (BLSA), in order to achieve high performance. A single-chip median filter characterized by a window length of 25 8-b samples, and by operation on three interleaved independent sequences for a total of 75 samples, is presented as a demonstration of the concept. The throughput relevant to one sequence is 1/3 for this chip, whereas the theoretical maximum allowed by the algorithm is 1/2. Prototypes designed with a 2-μm CMOS technology have been successfully tested at a clock frequency over 70 MHz  相似文献   

15.
A fifth-order elliptic low-pass continuous-time filter based on triode transconductors for applications in the video frequency range is presented. Fabricated in a standard 2-μm CMOS technology, the circuit occupies 6 mm2 of silicon area including the automatic tuning circuitry. The filter achieves a 7-MHz cutoff frequency using a parasitic pole compensation scheme. The dynamic range is 40 dB and power consumption is 30 mW for a 5-V supply. A transconductor biasing strategy which allows a continuous tuning range for the cutoff frequency of one decade is presented  相似文献   

16.
The channel width dependence of gate delay in 0.18-μm CMOSFET has been characterized. Substantial increase of gate delay observed in the narrow channel width region is found due to channel width independent capacitance components, which is inherent to transistors. An expression for gate delay considering the channel width independent capacitance components and gate sheet resistance is derived and compared with experimental data. The minimum gate delay is shown to result from the compromise between delay components proportional to channel width and proportional to inverse of channel width. Although the channel width independent capacitance is negligible in the wide channel width region, the gate delay of the 1-μm channel width ring oscillator increased more than 20% compared with the 5-μm channel width ring oscillator  相似文献   

17.
A 0.8-μm polycide-gate, double-layer-metal CMOS technology is described. Nominal device gate lengths down to 0.8 (±0.2) μm are used for both n- and p-channel transistors. Compact isolation, 175-A gate oxide grown in dry/wet/dry ambient, shallow-junction halo-implanted lightly doped drain n and p devices, TiN contact barrier, and a planarized double-layer-metal process are all integrated and demonstrated with a 0.8-μm full-CMOS 16K SRAM (static random-access memory) circuit. The device process integrity, design margins, performance, reliability, product yield and speed enhancement are all discussed in detail  相似文献   

18.
We first briefly introduce the various kinds of basic CMOS four-valued logic circuit that can be suitably employed for circuits with clock pulses. Using these, the design of multiple-valued MAX and MIN circuits with many inputs, each of which has two quaternary figures, are developed. It is shown that the number of MOS transistors required for these circuits can be reduced in comparison to binary circuits having equivalent functions. Successful simulation results using SPICE-2 for the circuit operations are given.  相似文献   

19.
Current-mode CMOS circuits are receiving increasing attention. Current-mode CMOS multiple-valued logic circuits are interesting and may have applications in digital signal processing and computing. In this paper we review several of the current-mode CMOS multiple-valued logic (MVL) circuits that we have studied over the past decade. These circuits include a simple current threshold comparator, current-mode MVL encoders and decoders, current-mode quaternary threshold logic full adders (QFAs), current-mode MVL latches, current-mode latched QFA circuits, and current-mode analog-to-quaternary converter circuits. Each of these circuits is presented and its performance described  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号