首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Catalytic thermal treatment (thermolysis) accompanied with coagulation was used for the removal of COD and color of composite wastewater from a cotton textile mill. CuSO4, FeSO4, FeCl3, CuO, ZnO and PAC were used as catalytic agents during thermolysis. Homogeneous copper sulphate at a mass loading of 6 kg/m3 was found to be the most active. Similarly during coagulation aluminum potassium sulphate [KAl(SO4)(2).16H2O] at a coagulant concentration of 5 kg/m3 was found to be the best among the other coagulants tested, namely, commercial alum, FeSO4, FeCl3 and PAC. During thermolysis, a reduction in COD and color of composite wastewater of about 77.9 and 92.85%, respectively, was observed at pH 12. Coagulation of fresh composite waste using aluminum potassium sulphate resulted in 88.62% COD reduction and 95.4% color reduction at pH 8. Coagulation of the supernatant obtained after treatment by catalytic thermolysis resulted in overall reduction of 97.3% COD and close to 100% color reductions at pH 8 at a lesser coagulant concentration of 3 kg/m3. The results reveal that the application of coagulation after thermolysis is most effective in removing nearly 100% of COD and color at a lower dose of coagulant. The sludge thus produced would contain lower inorganic mass coagulant and can be used as a solid fuel with high calorific value of about 16 MJ/kg, close to that of Indian coal.  相似文献   

2.
The decolorization and reduction of COD of dyeing wastewater from a cotton textile mill was conducted using catalytic thermal treatment (thermolysis) accompanied with/without coagulation. Thermolysis in presence of a homogeneous copper sulphate catalyst was found to be the most effective in comparison to other catalysts (FeCl(3), FeSO(4), CuO, ZnO and PAC) used. A maximum reduction of chemical oxygen demand (COD) and color of dyeing wastewater of 66.85% and 71.4%, respectively, was observed with a catalyst concentration of 5 kg/m(3) at pH 8. Commercial alum was found most effective coagulant among various coagulants (aluminum potassium sulphate, PAC, FeCl(3) and FeSO(4)) tested during coagulation operations, resulting in 58.57% COD and 74% color reduction at pH 4 and coagulant dose of 5 kg/m(3). Coagulation of the clear fluid (supernatant) obtained after treatment by thermolysis at the conditions previously used resulted in an overall reduction of 89.91% COD and 94.4% color at pH 4 and a coagulant dose of 2 kg/m(3). The application of thermolysis followed by coagulation, thus, is the most effective treatment method in removing nearly 90% COD and 95% color at a lower dose of coagulant (2 kg/m(3)). The sludge thus produced would contain lower inorganic mass coagulant and, therefore, less amount of inorganic sludge.  相似文献   

3.
This paper examines the use of chemical or electrocoagulation treatment process followed by ion-exchange process of the textile dye effluent. The dye effluent was treated using polymeric coagulant (cationic dye-fixing agent) or electrocoagulation (iron and aluminum electrode) process under various conditions such as various current densities and effect of pH. Efficiencies of COD reduction, colour removal and power consumption were studied for each process. The chemical or electrochemical treatment are indented primarily to remove colour and COD of wastewater while ion exchange is used to further improve the removal efficiency of the colour, COD, Fe concentration, conductivity, alkalinity and total dissolved solids (TDS). From the results chemical coagulation, maximum COD reduction of about 81.3% was obtained at 300 mg/l of coagulant whereas in electrocoagulation process, maximum COD removal of about 92.31% (0.25 A/dm2) was achieved with energy consumption of about 19.29 k Wh/kg of COD and 80% (1A/dm(2)) COD removal was obtained with energy consumption of about 130.095 k Wh/kg of COD at iron and aluminum electrodes, respectively. All the experimental results, throughout the present study, have indicated that chemical or electrocoagulation treatment followed by ion-exchange methods were very effective and were capable of elevating quality of the treated wastewater effluent to the reuse standard of the textile industry.  相似文献   

4.
Attempts were made in this study to examine the efficiency of Fenton process combined with coagulation for treatment of water-based printing ink wastewater. Parameters affecting the Fenton process, such as pH, dosages of Fenton reagents and the settling time, were determined by using jar test experiments. 86.4% of color and 92.4% of chemical oxygen demand (COD) could be removed at pH 4, 50mg/l H(2)O(2), 25mg/l FeSO(4) and 30min settling time. The coagulation using polyaluminium chloride (PAC) and ferrous sulfate (FeSO(4)) was beneficial to improve the Fenton process treated effluent in reducing the flocs settling time, enhancing color and COD removal. The overall color, COD and suspended solids (SS) removal reached 100%, 93.4% and 87.2% under selected conditions, respectively. Thus this study might offer an effective way for wastewater treatment of water-based ink manufacturer and printing corporation.  相似文献   

5.
In the present study, catalytic thermal treatment (thermolysis) was investigated for the reduction of COD and color of the desizing wastewater under moderate temperature and atmospheric pressure conditions using various catalysts. The experimental runs were performed in a glass reactor equipped with a vertical condenser. The homogeneous copper sulfate catalyst was found to be the most active in comparison to other catalysts under similar operating conditions. A removal of about 71.6% chemical oxygen demand (COD) and 87.2% color of desizing wastewater was obtained with a catalyst concentration of 4 kg/m(3) at pH 4. The initial pH value of the wastewater showed a pronounced effect on the precipitation process. During the thermolysis, copper gets leached to the aqueous phase, the residue obtained after the treatment is rich in copper and it can be blended with organic manure for use in agricultural fields. The thermogravimetric analysis showed that the thermal oxidation of the solid residue obtained after thermolysis gets oxidized at a higher temperature range than that of the residue obtained from the desizing wastewater. The results lead to the conclusion that thermochemical precipitation is a very fast (instantaneous) process and would need a very small reactor vessel in comparison to other processes.  相似文献   

6.
Advanced treatment of coking wastewater was investigated experimentally with coagulation and zero-valent iron (ZVI) processes. Particular attention was paid to the effect of dosage and pH on the removal of chemical oxygen demand (COD) in the two processes. The results showed that ZVI was more effective than coagulation for advanced treatment of coking wastewater. The jar tests revealed that maximal COD removal efficiency of 27.5-31.8% could be achieved under the optimal condition of coagulation, i.e. 400mg/L of Fe(2)(SO(4))3 as coagulant at pH 3.0-5.0. On the other hand, the COD removal efficiency could be up to 43.6% under the idealized condition of ZVI upon 10 g/L active carbon and 30 g/L iron being dosed at pH 4.0. The mechanisms for COD removal in ZVI were dominated by coagulation, precipitation and oxidation-reduction. ZVI would also enhance the biodegradability of effluent by increasing BOD5/COD from 0.07 to 0.53. Moreover, some ester compounds could be produced in the reaction. Although ZVI was found more efficient than coagulation in eliminating low molecular weight (<2000 Da) compounds in the wastewater, there were still a few residual contaminants which could hardly be eliminated by either of the process.  相似文献   

7.
Landfill leachate is a heavily polluted and a likely hazardous liquid that is produced as a result of water infiltration through solid wastes generated industrially and domestically. This study investigates the potential of using psyllium husk as coagulant and coagulant aid for the treatment of landfill leachate. Psyllium husk has been tested as primary coagulant and as coagulant aid with poly-aluminum chloride (PACl) and aluminum sulfate (alum). As primary coagulant, the optimum dosage and pH for PACl were 7.2 and 7.5 g/L, respectively, with removal efficiencies of 55, 80 and 95% for COD, color and TSS, respectively. For alum, the optimum conditions were 11 g/L alum dosage and pH 6.5 with removal efficiencies of 58, 79 and 78% for COD, color and TSS, respectively. The maximum removal efficiencies of COD, color and TSS were 64, 90 and 96%, respectively, when psyllium husk was used as coagulant aid with PACl. Based on the results, psyllium husk was found to be more effective as coagulant aid with PACl in the removal of COD, color and TSS as compared to alum. Zeta potential test was carried out for leachate, PACl, alum and psyllium husk before and after running the jar test to enhance the results of the jar test experiments.  相似文献   

8.
Dyeing and finishing of textile yarns and fabrics are extremely important processes in terms of both quality and environmental concerns. Among the commercial textile dyes, particularly disperse dyestuffs are of environmental interest because of their widespread use, their potential for formation of toxic aromatic amines and their low removal rate during aerobic waste treatment as well as advanced chemical oxidation. Thus, in the present paper ferrous iron coagulation, ozonation and ferrous iron-catalyzed ozonation were employed at varying pH (3-13) and Fe(II)-ion doses (0.09-18mM) for the treatment of a simulated disperse dye-bath (average initial apparent color as absorbance at 566nm=815.4m(-1); COD(0)=3784mgl(-1); TOC(0)=670mgl(-1); BOD(5,0)=58mgl(-1)) that more closely resembled an actual dyehouse effluent than an aqueous disperse dye solution. Coagulation with 5000mgl(-1) FeSO4-7H2O (18mM Fe(2+)) at pH 11 removed up to 97% color and 54% COD, whereas oxidation via ozonation alone (applied ozone dose=2300mgl(-1)) was only effective at pH 3, resulting in 77% color and 11% COD removal. Fe(II)-ion-catalyzed ozonation (3.6mM Fe(2+) at pH 3; Fe(2+):O3 molar ratio 1:14) eliminated 95% color and 48% COD and appeared to be the most attractive option among the investigated chemical treatment methods as for its applicability at the natural acidic pH of the disperse dye-bath effluent and at relatively low Fe(2+)-ion doses as compared to ferrous sulfate coagulation. However, no TOC reduction was observable for ozonation and catalytic ozonation at the investigated reaction conditions (14gl(-1) O3 at pH 3). An average six-fold enhancement in the biodegradability parameter of the synthetic dye wastewater expressed in terms of the BOD(5)/COD ratio could be achieved by the investigated chemical treatment methods.  相似文献   

9.
Attempts were made in this study to examine the effectiveness of coagulation and flocculation process using ferric chloride and polyelectrolyte (non-ionic polyacrylamide) for the treatment of beverage industrial wastewater. Removal of organic matter (expressed as chemical oxygen demand, COD), total phosphorus (TP) and total suspended solid (TSS) using ferric chloride and organic polyelectrolyte during coagulation/flocculation process were investigated. Also, the optimum conditions for coagulation/flocculation process, such as coagulant dosage, polyelectrolyte dosage, and pH of solution were investigated using jar-test experiment. The effect of different dosages of polyelectrolyte in combination with coagulant was also studied. The results revealed that in the range of pH tested, the optimal operating pH was 9. Percentage removals of 73, 95 and 97 for COD, TP and TSS, respectively, were achieved by the addition of 300mg/L FeCl(3).6H(2)O, whereas 91, 99 and 97% removal of COD, TP and TSS, respectively, were achieved with the addition of 25mg/L polyelectrolyte to 100mg/L ferric chloride. The volume of sludge produced, when ferric chloride was used solely, was higher compared to the use of combination of polyelectrolyte and FeCl(3).6H(2)0. The combined use of coagulant and polyelectrolyte resulted in the production of sludge volume with reduction of 60% of the amount produced, when coagulant was solely used for the treatment. It can be concluded from this study that coagulation/flocculation may be a useful pre-treatment process for beverage industrial wastewater prior to biological treatment.  相似文献   

10.
Coagulation-flocculation is a relatively simple physical-chemical technique in treatment of old and stabilized leachate which has been practiced using a variety of conventional coagulants. Polymeric forms of metal coagulants which are increasingly applied in water treatment are not well documented in leachate treatment. In this research, capability of poly-aluminum chloride (PAC) in the treatment of stabilized leachate from Pulau Burung Landfill Site (PBLS), Penang, Malaysia was studied. The removal efficiencies for chemical oxygen demand (COD), turbidity, color and total suspended solid (TSS) obtained using PAC were compared with those obtained using alum as a conventional coagulant. Central composite design (CCD) and response surface method (RSM) were applied to optimize the operating variables viz. coagulant dosage and pH. Quadratic models developed for the four responses (COD, turbidity, color and TSS) studied indicated the optimum conditions to be PAC dosage of 2g/L at pH 7.5 and alum dosage of 9.5 g/L at pH 7. The experimental data and model predictions agreed well. COD, turbidity, color and TSS removal efficiencies of 43.1, 94.0, 90.7, and 92.2% for PAC, and 62.8, 88.4, 86.4, and 90.1% for alum were demonstrated.  相似文献   

11.
An investigation was made to study the feasibility of recovering the Alum from coagulation sludges and reusing it in chemically enhanced primary treatment (CEPT) process to make the CEPT more cost-effective and recover the resource (Alum) efficiently. The optimum condition and efficiency of the acidification method for Alum recovery from coagulation sludge were investigated in the test. The results show that when the recovery rate of Alum reaches its highest level, 84.5%, the reduction rate of sludge is 35.5%. It turns out that the capability of recovered coagulant to remove turbidity, UV(254) and COD are 96%, 46% and 53%, respectively. The results prove that the recovered coagulants could be used in CEPT and the efficiency of recovered coagulant to remove pollutants is similar to that of fresh coagulant. Although some substances will be enriched during recycle, they have little effect on the quality of treated wastewater. The experiments verify that it would be an advisable and cost-effective way to recover Alum from coagulation sludges in water treatment and chemical wastewater treatment, and it could be then recycled to CEPT as well as reduce sludge volume.  相似文献   

12.
This study investigated the effect of coagulation/flocculation treatment process on wastewater of Fumman Beverage Industry, Ibadan, Nigeria. The study also compared different dosages of coagulant, polyelectrolyte (non-ionic polyacrylamide) and different pH values of the coagulation processes. The effect of different dosages of polyelectrolyte in combination with coagulant was also studied. The results reveal that low pH values (3-8), enhance removal efficiency of the contaminants. Percentage removal of 78, 74 and 75 of COD, TSS and TP, respectively, were achieved by the addition of 500 mg/L Fe2(SO4)3.3H2O and 93, 94 and 96% removal of COD, TSS and TP, respectively, were achieved with the addition of 25 mg/L polyelectrolyte to the coagulation process. The volume of sludge produced, when coagulant was used solely, was higher compared to the use of polyelectrolyte combined with Fe2(SO4)3.3H2O. This may be as a result of non-ionic nature of the polyelectrolyte; hence, it does not chemically react with solids of the wastewater. Coagulation/flocculation may be useful as a pre-treatment process for beverage industrial wastewater prior to biological treatment.  相似文献   

13.
This is the first part of a work on the chemistry of aluminium as coagulant in the treatment of highly polluted cork processing wastewater. The main aim of this first part was to determine the removal of organic matter - measured by reductions in chemical oxygen demand (COD), polyphenols (TP), and aromatic compounds (A) - that can be obtained using this physicochemical process. To this end, jar-test experiments were carried out to determine the optimal conditions for the process, in particular, the effective aluminium dosage, contamination level of wastewater, coagulant mixing time, stirring speed, and pH. The ranges of tested parameters for the coagulation process were: coagulant dose (33-166 mgL(-1) of Al(3+)), contamination of the wastewater (COD between 1060 and 3050 mgO(2)L(-1)), mixing time (5-30 min), stirring speed (60-300 rpm) and pH (4-11). The resulting removal capacities were in the ranges of 20-55% for COD, 28-89% for polyphenols, and 29-90% for aromatic compounds. The best results were obtained with a coagulant mixing time of 5 min and a stirring speed of 300 rpm. The optimal choices of pH and coagulant dose fundamentally depended on the contamination level of wastewater.  相似文献   

14.
Chemically enhanced primary treatment (CEPT) is a technology that uses coagulants for enhanced pollutants removal at the primary stage of the wastewater treatment. This paper presents the detailed characteristics of tannery wastewater. It also explains effectiveness of CEPT in removing pollutants from tannery wastewater using various metal salts. The results of this study demonstrated that the tannery effluent had high concentrations of organic matter, solids, sulfates, sulfides and chromium. Alum, ferric chloride and ferric sulfate were tested as coagulants using jar test apparatus. Alum was found to be the suitable coagulant for tannery wastewater in a dose range of 200-240 mg/L as Al(2)(SO(4))(3). With alum, percentage removal efficiency for turbidity, total suspended solids (TSS), chemical oxygen demand (COD) and chromium was found to be 98.7-99.8, 94.3-97.1, 53.3-60.9, and 98.9-99.7%, respectively. National effluent quality standards for total suspended solids and chromium were met after CEPT. However, COD content was high, emphasizing the need of secondary treatment for the tannery effluent.  相似文献   

15.
The applicability of Fenton's oxidation as an advanced treatment for chemical oxygen demand (COD) and color removal from anaerobically treated poultry manure wastewater was investigated. The raw poultry manure wastewater, having a pH of 7.30 (+/-0.2) and a total COD of 12,100 (+/-910) mg/L was first treated in a 15.7 L of pilot-scale up-flow anaerobic sludge blanket (UASB) reactor. The UASB reactor was operated for 72 days at mesophilic conditions (32+/-2 degrees C) in a temperature-controlled environment with three different hydraulic retention times (HRT) of 15.7, 12 and 8.0 days, and with organic loading rates (OLR) between 0.650 and 1.783 kg COD/(m3day). Under 8.0 days of HRT, the UASB process showed a remarkable performance on total COD removal with a treatment efficiency of 90.7% at the day of 63. The anaerobically treated poultry manure wastewater was further treated by Fenton's oxidation process using Fe2+ and H2O2 solutions. Batch tests were conducted on the UASB effluent samples to determine the optimum operating conditions including initial pH, effects of H2O2 and Fe2+ dosages, and the ratio of H2O2/Fe2+. Preliminary tests conducted with the dosages of 100 mg Fe2+/L and 200 mg H2O2/L showed that optimal initial pH was 3.0 for both COD and color removal from the UASB effluent. On the basis of preliminary test results, effects of increasing dosages of Fe2+ and H2O2 were investigated. Under the condition of 400 mg Fe2+/L and 200 mg H2O2/L, removal efficiencies of residual COD and color were 88.7% and 80.9%, respectively. Under the subsequent condition of 100 mg Fe2+/L and 1200 mg H2O2/L, 95% of residual COD and 95.7% of residual color were removed from the UASB effluent. Results of this experimental study obviously indicated that nearly 99.3% of COD of raw poultry manure wastewater could be effectively removed by a UASB process followed by Fenton's oxidation technology used as a post-treatment unit.  相似文献   

16.
The objective of the present study is to optimize the treatment of the cardboard industry wastewater generated in the process of machine washing. This type of effluent is usually treated by traditional physicochemical processes such as coagulation/flocculation and sedimentation. These processes give a limited purifying efficiency, particularly for the COD reduction. In this work, the treatment by coagulation-electroflotation process was adopted. In batch mode treatment, current density, pH and coagulant concentration are the operating parameters to optimize. The methodology of experimental research, with an orthogonal central composite plan was adopted. Good agreement between theoretical analysis and experimental results was obtained. Continuous mode was also studied in order to optimize the residence time. A physicochemical characterization including COD, BOD and suspended solids charge was done before and after the treatment in order to improve the efficiency of this process.  相似文献   

17.
Coagulation–flocculation has been proven as one of the effective processes in treating palm oil mill effluent (POME), which is a highly polluted wastewater generated from palm oil milling process. Two pairs of natural coagulant–flocculant were studied and evaluated: peanut–okra and wheat germ–okra. This research aims to optimize the operating parameters of the coagulation flocculation process in removing turbidity, total suspended solid and chemical oxygen demand (COD) from POME by using a central composite design in the Design Expert® software. Important parameters such as operating pH, coagulant and flocculant dosages were empirically determined using jar test experiment and optimized using response surface methodology module. Significant quadratic polynomial models were obtained via regression analyses (R2) for peanut–okra (0.9355, 0.9534 and 0.8586 for turbidity, total suspended solids and COD removal, respectively) and wheat germ–okra (0.9638, 0.9578 and 0.7691 for turbidity, total suspended solids and COD removal, respectively). The highest observed removal efficiencies of turbidity, total suspended solids and COD (92.5, 86.6 and 34.8%, respectively, for peanut–okra; 86.6, 87.5 and 43.6%, respectively, for wheat germ–okra) were obtained at optimum pH, coagulant and flocculant dosages (pH 11.6, 1000.1 mg/L and 135.5 mg/L, respectively, for peanut–okra; pH 12, 1170.5 mg/L and 100 mg/L, respectively, for wheat germ–okra). The coagulation flocculation performance of peanut–okra and wheat germ–okra were comparable to each other. Characterizations of the natural coagulant–flocculant, as well as the sludge produced, were performed using Fourier transform infrared, energy-dispersive X-ray spectroscopy and field emission scanning electron microscope. More than 98% of water was removed from POME sludge by using centrifuge and drying methods, indicating that a significant reduction in sludge volume was achieved.  相似文献   

18.
Aluminum sulfate, alum, is a common chemical coagulant used for coagulation. Recently, polymers have been utilized in coagulation/flocculation processes for water purification. In this study, the ability of two organic polymers, tannin (natural polyelectrolyte) and AN913 (synthetic anionic polyelectrolyte), and clay to act as coagulant aids was tested, in the removal of phosphate from synthetic wastewater. Contaminants in synthetic waters were coagulated using alum, alum+clay, alum+tannin, alum+AN913, alum+tannin+clay and alum+AN913+clay. Alum together with polymers as coagulant aids yielded a significant improvement in phosphate removal compared with alum alone, for initial phosphate concentrations of 5–15 mg/l PO43−. The use of clay and polyelectrolytes improved the efficiency of phosphate removal and lowered the required alum dose. Fourier transform infrared (FTIR) spectroscopy was used for the identification and characterization of the aluminum species formed during dephosphorization of the synthetic wastewater with and without tannin, AN913 and clay. Evidence from FTIR spectroscopy showed the formation of aluminum hydroxyphosphate, hydroxy-Al-tannate and aluminum complexes containing phosphorus, tannin and AN913.  相似文献   

19.
Performance of a full-scale combined treatment plant for jean-wash wastewater (JWW) was investigated. The combined process consisted of chemical coagulation, hydrolysis/acidification and Fenton oxidation. Chemical coagulation treatment with polymeric ferric sulfate (PFS)/lime alone proved to be effective in removing the COD (>70%) and part of the color (>50%) from the JWW. Fenton oxidation combined with hydrolysis/acidification as pretreatment offered a noticeable BOD removal efficiency. The average removal efficiencies for COD, BOD, SS, color and aromatic compounds of the combined process were about 95%, 94%, 97%, 95% and 90%, respectively, with the average effluent quality of COD 58 mg/L, BOD 19 mg/L, SS 4 mg/L and color 15(multiple), consistent with the national discharge limits for textile wastewater. The result indicated that the combined procedure could offer an attractive solution for JWW treatment with considerable synergistic advantages.  相似文献   

20.
Electrocoagulation (EC) of cattle-slaughterhouse wastewater, which is characterized by (i) high turbidity (up to 340 Nephelometric turbidity units), (ii) increased chemical oxygen demand (COD) concentration (4200 mg L(-1)), and (iii) a dark color, was investigated with the purpose of lowering the turbidity and COD concentration to levels below the permitted direct-discharge limits. Iron and aluminum were used as electrode materials. Experiments were conducted to evaluate the effects of current density, initial pH, and supporting electrolyte (Na(2)SO(4)) dosage on the performance of the system. COD removal increased with increase in current density. The original pH of wastewater (7.8) was found to be preferable for both the electrode materials. Higher concentrations of Na(2)SO(4) caused an increase in COD removal efficiency, and energy consumption was considerably reduced with increasing conductivity. Hybrid processes were applied in this work to achieve higher COD removal efficiencies. In the case of aluminum electrode, polyaluminum chloride (PAC) was used as the coagulant aid for the aforesaid purpose. COD removal of 94.4% was obtained by adding 0.75 g L(-1) PAC. This removal efficiency corresponded to effluent COD concentration of 237 mg L(-1), which meets the legal requirement for discharge from slaughterhouses in Turkey. In the case of iron electrode, EC was conducted concurrent with the Fenton process. As a result, 81.1% COD removal was achieved by adding 9% H(2)O(2). Consequently, hybrid processes are inferred to be superior to EC alone for the removal of both COD and turbidity from cattle-slaughterhouse wastewater.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号