首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of high pressure-thermal (HPT) processing (600 MPa, 20–100 °C) on the activity of pear enzymes and related quality attributes was investigated. HPT processing at 20 °C for 5 min resulted in 32%, 74% and 51% residual activities of polyphenol oxidase (PPO), peroxidase (POD) and pectin methylesterase (PME), respectively. Increasing processing temperature to 40 and 60 °C reduced the level of PPO and POD inactivation, with the maximum residual activities of 64% and 123%, respectively observed after 3-min treatments at 40 and 60 °C. Overall, HPT at 20 to 60 °C had minimal effect on quality, although enzymatic browning was observed upon air exposure. HPT at 80 to 100 °C caused almost complete inactivation of PPO and POD with 90% and 92% inactivation respectively after 3-min processing at 100 °C, which reduced browning upon air exposure. Nevertheless, the lowest texture retention of 22% was observed under this condition.Industrial relevanceThe study examined the effects of combined high pressure thermal processing on quality related pear enzymes and related instrumental quality attributes such as colour and texture. The study enabled identification of processing regimes for enzyme inactivation and quality retention. The excellent quality retention following HPP at 20 to 40 °C makes this condition suitable for ‘fresh-like’ small portion products for immediate consumption after unpacking that do not require complete PPO and POD inactivation. On the other hand, the almost complete inactivation of oxidative enzymes PPO and POD at 100 °C makes this condition more appropriate for the production of bulk products for food service applications or pureed ingredients for baby food, or pear pieces for yoghurt, that require PPO inhibition but not necessarily high firmness retention.  相似文献   

2.
The objective of this work was to study the thermal and high pressure inactivation kinetics of polyphenol oxidase (PPO) and peroxidase (POD) in strawberry puree. PPO from two strawberry cultivars (‘Festival’ and ‘Aroma’) was found to be highly thermostable in strawberry puree with no significant inactivation even after 30 min treatment at 100 °C. In contrast, POD from the two cultivars displayed very high thermosensitivity with complete inactivation in less than 5 min at 70 °C. The thermal inactivation kinetics of strawberry POD was described by a biphasic model. The activation energies for the inactivation of the stable and the labile fractions were estimated to be 254.9 and 221.6 kJ/mol respectively. Combined high pressure–thermal treatment at pressures ranging from 100 to 690 MPa, temperatures ranging from 24 to 90 °C and treatment times between 5 and 15 min did not have significant effect on PPO while substantial inactivation of POD was observed. The inactivation kinetics of POD during combined high pressure–thermal processing was well described by first-order kinetics probably due to the inactivation of the labile fraction during the pre-heating and the compression phase.Industrial relevanceThe oxidative enzymes polyphenol oxidase and peroxidase cause the degradation of anthocyanins and other polyphenols in strawberry products, leading to discoloration and loss of antioxidant activity. In this work the thermal and high pressure inactivation of strawberry polyphenol oxidase and peroxidase was investigated so as to assess the suitability of high pressure processing as an alternative to thermal processing. Strawberry polyphenol oxidase was found to be highly resistant to both thermal and high pressure inactivation. Thus in order to maintain the quality of processed strawberry products, high pressure processing should be accompanied by additional measures such as exclusion of oxygen, refrigerated storage and the use of natural enzyme inhibitors.  相似文献   

3.
The interest in coconut water as a beverage is increasing due, not only to its sensory properties, but also to its nutritional characteristics. Even so, several challenges limit its processing, the inactivation of the polyphenol oxidase (PPO) and peroxidase (POD) enzymes being the most important. Although the inactivation of these enzymes has been extensively studied in coconut water, both by conventional and emerging technologies, the technologies evaluated so far are either not effective in the inactivation of these enzymes and/or result in undesirable changes. This work evaluated the photo-inactivation of POD and PPO in a coconut water model solution using ultraviolet radiation (UV). Both enzymes showed continuous inactivation behaviour in relation to the processing time, this being described by a two-portion inactivation kinetics. A possible mechanism for the observed photo-inactivation was proposed, involving steps of molecular unfolding and aggregation. The POD activity after 15 min of processing was ~ 5% of its original value, and reduced to ~ 1% after 30 min of UV processing. After 15 min of processing, PPO activity was ~ 8% of its original value, falling to ~ 2% after 30 min of UV processing. The results obtained highlight the potential use of the ultraviolet radiation to inactivate both enzymes in coconut water.  相似文献   

4.
Consumers demand fresh-cut fruits, free from additives and with fresh appearance. However, the alteration caused by the tissue processing limits their shelf life. The aim of this work was to optimize the pressure level (from 400 to 600 MPa) and the holding time (from 1 to 9 min) of the high pressure processing (HPP) to achieve enzyme inactivation while preserving texture and color of minimally processed peaches. Peach cylinders were processed by combining dipping in organic acid solution, with vacuum packaging and HPP at room temperature. Results showed that higher pressure levels were more effective to inactivate enzymes and to preserve color than longer times. In addition, long treatments affected the microstructure and the texture of the tissues more seriously. Finally, a desirability study and a principal component analysis were performed. These showed that the optimal treatment would be 585 MPa and 1 min and that the best treatment of the ones studied was 600 MPa for 5 min.Industrial RelevanceThere is an increasing demand for minimally processed fruits as a result of their convenience and fresh-like characteristics. Although consumers are familiar with the consumption of canned peaches, the nutritional profile of this product is far from being optimal, and therefore minimal processing offers the unique advantage of maintaining the original quality of the fresh fruit. However, this product is prone to suffer alterations such as browning and softening. High pressure processing (HPP) is proposed as a non-thermal technology able to suitably preserve minimally processed peaches. This study aimed to optimize the conditions of the HPP treatment, to achieve enzyme inactivation while maintaining texture and color. The promising results obtained can help promote the use of HPP as an alternative to preserve the quality and extend the shelf life of minimally processed fruits.  相似文献   

5.
Polyphenol oxidase (PPO) and peroxidase (POD) cannot be fully inactivated by commercial high pressure processing (HPP) operations, and their residual activities may accelerate nutrient degradation during storage. This study hence aimed to establish the effect of residual enzyme activity on nutrient preservation in bok choy (Brassica rapa subsp. chinensis) juice. Bok choy juice was treated at 600 MPa for up to 20 min and enzyme inactivation, nutrient retention immediately after treatment and nutrient preservation during storage were determined. High residual PPO (85.1 ± 2.6%) and POD (68.5 ± 1.0%) activities remained after 20 min of treatment. Increasing the pressure holding time to enhance enzyme inactivation did not compromise total antioxidant capacity, vitamin C, carotenoids, isothiocyanates and vitamin K levels. Neither did it significantly reduce the vitamin C degradation rate during refrigerated storage. Maximising enzyme inactivation may thus not be necessary for nutrient preservation during the storage of HPP-treated bok choy juice.Industrial relevance textWith HPP, an increase in pressure or holding time is required to achieve higher levels of enzyme inactivation. Without the need to maximize PPO and POD inactivation, juice processors may employ the minimum pressure and holding time required for microbial inactivation. As vegetative bacteria are typically less resistant to HPP inactivation than these enzymes, this could translate to reduced energy costs and increased throughput.  相似文献   

6.
The effects of high pressure homogenization (HPH, < 190 MPa) and high pressure processing (HPP, < 600 MPa) on hen egg white lysozyme muramidase and antimicrobial activities were assessed. The results showed enzyme activation under mild process conditions (< 120 MPa for HPH and < 400 MPa for HPP, both at 20 °C) and mostly for activity measured at non-optimum pH and temperature. When processes were carried out at 50 °C, lower activation were observed (< 18% for HPH and < 13% for HPP), possibly indicating that processes at 50 °C delivered enough energy to promote undesirable unfolding on lysozyme. HPH induced a greater increase in muramidase activity (29%) than HPP (17%), but this not reflected the antimicrobial performance of the processed lysozyme, since only HPP reduced the minimum inhibitory concentration of the lysozyme against Bacillus cereus (50%) and Geobacillus stearothermophilus (66%). The results highlighted that each process changed differently the lysozyme muramidase and antimicrobial activity.Industrial relevanceHPP and HPH are generally described as technologies able to increase the activity of several enzymes and are suggested as tools to improve the performance of commercial enzymes. The results showed that although HPP and HPH were able to increase the muramidase activity of lysozyme, improvement of the antibacterial performance was only observed for samples processed by HPP. Therefore HPP was highlighted as the better pressure process to physically modify lysozyme.  相似文献   

7.
The effects of high-intensity pulsed electric field (HIPEF) processing (35 kV/cm for 1727 μs applying 4-μs pulses at 188 Hz in bipolar mode) on color, viscosity and related enzymes in watermelon juice were evaluated during 56 days of storage and compared to thermal treatments (90 °C for 60 s or 30 s). HIPEF-treated juice maintained brighter red color than thermally treated juices along the storage time. In addition, the application of HIPEF as well as heat at 90 °C for 60 s led to juices with higher viscosity than those untreated for 56 days of storage. On the other hand, peroxidase (POD) was inactivated more efficiently after HIPEF processing than after applying heat treatments. However, the thermally processed juice at 90 °C for 60 s kept the lowest residual POD activity values beyond day 7 of storage. Differences in lipoxygenase (LOX) activity among treatments were not appreciated at day 0. However, storage time had a strong reducing influence on the enzyme activity of heat-treated samples. A substantial loss of pectin methylesterase (PME) activity (more than 50%) was observed in all the treated juices, whereas a slight reduction in polygalacturonase (PG) activity was only achieved after the HIPEF treatment. The use of HIPEF technology could be an alternative to thermal treatments and could contribute to better maintain valuable attributes of watermelon juice.Industrial RelevanceHIPEF processing is a feasible alternative to thermal treatments to obtain watermelon juice, achieving optimal inactivation of deleterious microorganisms and quality-related enzymes. HIPEF-treated watermelon juices exhibit better physical properties such as color or viscosity than thermally treated juices throughout storage. Thus, HIPEF technology can help processors to obtain juices that keep their fresh characteristics, thus being better accepted by consumers.  相似文献   

8.
The effects of high-pressure processing (HPP) at 550 MPa for 6 min and of high-temperature short-time (HTST) processing at 110 °C for 8.6 s on carrot juice were evaluated. After HPP and HTST, the total plate count (TPC) was found to significantly decrease by 4.30 and 4.88 log10 CFU/mL, respectively, and yeasts and molds (Y&M) were completely inactive. HPP-treated juice showed higher carotenoids, polyphenols, antioxidant capacity, viscosity, turbidity, and lower browning degrees (BDs) than HTST-treated juice, while HTST-treated juice contained higher polyacetylenes. HPP provided a more fresh-like quality and exhibited better aroma, taste, and overall acceptability. During 20 days of storage at 4 °C, both HPP- and HTST-treated juices were microbiologically safe (i.e., TPC < 2.4 log10 CFU/mL, and Y&M were not detected), and their antioxidant capacities decreased linearly due to a decrease in carotenoid and polyphenol contents. The two juices did not precipitate any solids when their particle sizes decreased, and their viscosity increased; however, their organoleptic properties deteriorated as storage time increased.Industrial RelevanceThis study was intended to develop fresher and more stable carrot juice, which is not available on the market now. Acid blanching for a proper time was proved as an effective process in preventing juice serum isolation phenomenon of HPP juice, which is more likely to be accepted by consumers. HPP-treated juice had an advantage in nutritional and organoleptic properties than HTST-treated juice. This study provided a comprehensive technical support for novel application of HPP in carrot juice processing.  相似文献   

9.
The efficacy of a pressure–ohmic–thermal sterilization (POTS) for Bacillus amyloliquefaciens and Geobacillus stearothermophilus spore inactivation was investigated. Spores (2.5 × 108 cfu/ml) were inoculated in 0.1% NaCl solution (pH 5.0 and 7.0), green pea puree (pH 6.1), carrot puree (pH 5.0) or tomato juice (pH 4.1). Samples were ohmically (50 V/cm) treated at 600 MPa and 105 °C for various holding times using a laboratory-scale high-pressure processor. B. amyloliquefaciens and G. stearothermophilus spores suspended in 0.1% NaCl solution (pH 7.0) were inactivated by 4.6 and 5.6 log, respectively, for a 30-min holding time. B. amyloliquefaciens and G. stearothermophilus spores in tomato juice were reduced by 3.1 and 4.8 log, respectively, for a 10-min holding time. Spore germination was highest in the G. stearothermophilus suspended in 0.1% NaCl solution (pH 7.0). POTS treatment appears to be a potent method for inactivating pressure–thermal resistant bacterial spores.Industrial RelevanceFood industry is interested in developing superior quality low-acid shelf-stable foods. This study evaluated the pressure–ohmic–thermal sterilization (POTS) for the inactivation of Bacillus amyloliquefaciens and Bacillus stearothermophilus endospores. The impact of food matrices and acidity on the spore resistance was also investigated. Knowledge gained from the study will help the food processors for understanding the importance of various POTS treatment parameters for sterilization of low-acid foods.  相似文献   

10.
High pressure processing (HPP) reduces the glycolytic activity of lactic acid bacteria (LAB) and provides a means to control further production of acidic metabolites in fermented dairy products during storage. However, there is limited information on the effects of HPP on specific enzymes of dairy starter bacteria responsible for the metabolism of lactose. The aim of this study was to determine pressure-induced inactivation of glycolytic enzymes in Lactococcus lactis subsp. lactis C10, Streptococcus thermophilus TS1 and Lactobacillus acidophilus 2400. Cultures were grown for 16 h in M17 or MRS broth containing 5% (w/v) lactose at pH 6.5 (maintained by addition of 10 M NaOH). The cells were harvested by centrifugation, washed and resuspended in 100 mM phosphate buffer (pH 6.5) and pressure-treated at 300 and 600 MPa (≤ 22 °C, 5 min). The ability of pressure-treated resting cells of Lactococcus, incubated with 5% (w/v) lactose at 30 °C, to ferment lactose was evaluated by determining titratable acidity (TA) during incubation. The activities of phospho-β-galactosidase (P-β-gal), β-galactosidase (β-gal) and lactate dehydrogenase (LDH) were determined in cell-free extracts of untreated and pressure-treated cells. Resting cells of Lactococcus treated at 600 MPa had a substantially lower rate of acidification than the controls and those treated at 300 MPa. Both P-β-gal and β-gal were significantly inactivated (p < 0.01) in the starter cultures treated at 300 or 600 MPa. The LDH in Lactococcus and Lactobacillus was highly resistant to pressure treatment at 300 MPa. In contrast, the LDH in Streptococcus was almost completely inactivated at ≥ 300 MPa.Industrial relevanceContinuing production of acidic metabolites in fermented dairy products during storage can be a technological challenge that adversely affects product quality. The current study demonstrates that high pressure processing (HPP) offers the potential of controlling this problem by inactivation of glycolytic enzymes in various mesophilic and thermophilic starter cultures. The findings of this research will assist in establishing optimised operating parameters for HPP treatment of cultured products to extend shelf-life, by reducing acid production during storage.  相似文献   

11.
The combined effect of ohmic heating (OH) and osmotic dehydration (OD) with vacuum impregnation (VI), on the polyphenoloxidase (PPO) inactivation, physical properties and microbial stability of apples stored at 5 °C or 10 °C was analyzed. The treatments were performed using a 65% (w/w) sucrose solution and with ohmic heating at 13 V/cm at 30 °C, 40 °C or 50 °C for 90 min. Examination of the dehydrated samples showed that the water loss and the solid gain were greater with the OD/OH and VI/OH treatments at 50 °C. PPO was completely inactivated by the OD/OH and VI/OH treatments at 50 °C. There was a correlation between the PPO activity, the color change and the browning index of the treated and stored samples; the values for these parameters were stable when PPO was inactivated. The lowest loss of firmness and color was obtained with the VI/OH treatment at 50 °C. The shelf-life of the apples treated with VI/OH at 50 °C and stored at 5 °C was extended to more than 4 weeks. Therefore, the VI/OH treatment at 50 °C was determined to be the best process for dehydrating apples.Industrial relevanceThe aim of this research was 1 to study the combined effect of ohmic heating (OH) and osmotic dehydration (OD) with vacuum impregnation (VI) on the polyphenoloxidase inactivation and microbial stability of osmotically dehydrated apples stored at either 5 °C or 10 °C. Two technologies, OH and OD were performed at 30, 40 or 50 °C with an electric field intensity of 13 V/cm and conventional heating for 90 min. The results showed a correlation between the PPO activity, the color change and the browning index of the treated and stored samples; the values were stable when PPO was inactivated. PPO was completely inactivated by the OD/OH and VI/OH treatments at 50 °C. The shelf-life of the apples treated was extended to more than 4 weeks. Under the investigated conditions, VI/OH treatment at 50 °C and stored at 5 °C may be considered the better minimal processing that preserves the fresh-like properties.  相似文献   

12.
High pressure processing (HPP) and thermal pasteurization (TP) of fermented minced pepper (FMP) were comparatively evaluated by examining their impacts on microbial load, titratable acid (TA), pH, aw, firmness, color, capsanthin, ascorbic acid (AA), and biogenic amines (BAs) after processing and during 12 weeks of storage at 25 and 37 °C. The total plate count (TPC) in FMP samples was reduced by 1.48, 0.12 and 1.58 log10 CFU/g after TP (83 °C/15 min), HPP1 (500 MPa/20 °C/5 min) and HPP2 (500 MPa/50 °C/5 min), respectively. The population of spores was reduced by 1.21 log10 CFU/g only after HPP2. During storage at 25 or 37 °C, the TPC in TP, HPP1, and HPP2 samples increased by 0.88/1.21, 0.41/0.62 and 0.60/0.86 log10 CFU/g, respectively, while the spores decreased below the detection limit. The retention of firmness after TP, HPP1 and HPP2 was 36.91, 91.15 and 66.48% respectively, and HPP-treated samples exhibited more retention during the storage. Color of FMP samples was not changed by TP, but slightly changed by HPP1 and HPP2. The content of capsanthin retained 78.99, 93.71 and 88.19% after TP, HPP1 and HPP2, it showed a small decrease during storage. Levels of biogenic amines (BAs) in HPP2 samples were lower than that of TP and HPP1 ones. There were better sensory quality and lower microbial level in HPP-treated samples during storage, indicating that HPP is a better choice for the preservation of FMP.Industrial relevanceConsumption of fermented minced pepper (FMP), as a traditional Chinese food, is becoming increasingly popular. Considering that heat treatment may destroy some heat-sensitive quality of the products, this study evaluated the effects of high pressure processing (HPP) on quality of FMP. Findings of this study could help processors commercialize HPP to replace current thermal processing in industrial production.  相似文献   

13.
Cubes of Granny Smith and Pink Lady apples were vacuum packed in barrier bags with 0% to 50% (v/v) pineapple juice (PJ) at 20°Bx and subjected to high pressure processing (HPP) at 600 MPa for 1–5 min (22 °C). The in-pack total colour change (ΔE) was observed over 4 weeks at 4 °C. Within <1 week of storage at 4 °C, texture, polyphenoloxidase, pectinmethylesterase activities, changes in ΔE and visual browning after opening the bags during air exposure (22 °C; 21% O2 ) for 5 h were also monitored. During the 4 weeks storage in bag visible colour changes were not observed. Texture and ΔE after 5 h air exposure were significantly affected by the apple variety, HPP time and % PJ used. The combined treatment significantly reduced residual PPO activity while PME activity was not affected in both varieties. Pineapple juice in combination with HPP could be used as a natural preservation system for minimally processed apples.Industrial relevanceBrowning upon opening the packs and during air exposure can adversely affect the quality of fresh-cut fruits. Combined treatment of high pressure processing (HPP) and use of pineapple juice has the potential to prevent browning for several hours giving sufficient time for presentation and use in domestic and foodservice environment where high quality fresh-like fruit is required.  相似文献   

14.
The volatile profile of a plum purée processed by high pressure processing (HPP) was evaluated by the method of solid-phase micro-extraction gas chromatography/mass spectrometry (SPME–GC/MS). Two pressure intensity levels and three holding times were applied (400 and 600 MPa for 1, 150 and 300 s). Processed purées were compared to raw purée (unprocessed purée). A total of 40 volatile compounds were identified in the headspace of the plum purée. The major compounds identified were an aldehyde (hexanal) and two alcohols (hexan-1-ol and (Z)-hex-3-en-1-ol). Among the total compounds isolated (40), 23 compounds were significantly influenced by HPP. The modifications of these 23 volatiles represented changes of the 1.8% of the total aroma of the original purée. Results showed that the most intense treatments did not significantly alter the original aroma of plum purée. Therefore, HPP appears to be an alternative technology for the preservation of aromatic compounds of plum purée.Industrial relevanceHigh-pressure processing is one of the most successful technologies to obtain high-quality fruit purées. It is generally recognized that this treatment better preserves the original aroma of fruit. Two levels of pressure intensity and three holding times were applied (400 and 600 MPa for 1, 150 and 300 s) in order to know the effect of the treatments on the original aroma of plum. The combination of pressure and holding time did not affect the original aroma of plum. Results of this paper demonstrated that high-pressure processing preserves plum puree with a fresh-like aroma. On the other hand, a study of storage would be required to assess possible changes in the stability of the plum purée taking into account other parameters such as microbiological stability and inactivation of enzymes.  相似文献   

15.
The potential application of Fucus spiralis, Bifurcaria bifurcata, Codium tomentosum and Codium vermilara extracts as post-harvest treatments in minimally processed (MP) Fuji apple was investigated. 0.5% solutions of each extract were applied to MP Fuji apple and its effect on product quality was assessed over 20 days of storage at 4 ± 2 °C in terms of moisture content, soluble solids concentration (SSC), firmness, browning index (BI) and POD and PPO activities. Application of Codium tomentosum extract resulted in a significant reduction in BI in comparison to all other tested treatments. POD and PPO activities were also significantly lower in MP apple treated with Codium tomentosum extract. These results identify Codium tomentosum extract functionality of reducing enzymatic browning, suggesting the potential application of this extract as a natural additive in MP fruit.Industrial relevanceThis study shows the advantages of using a novel post-harvest treatment based in edible seaweed extracts to preserve fresh-cut fruits, in particular Fuji apple. The results show clearly that this type of dipping treatment decreases browning index and inhibits enzymatic activities when compared with citric acid and control treatment (water). Codium tomentosum extract solution showed the highest efficacy, suggesting the potential application of this extract as a natural additive to be a substitute of chemicals used in food industry and its use has been restricted. This process is efficient, versatile and of simple implementation at the industrial level once the only change in the industrial process consists in the type of post-harvest solution treatment. Associated to the easy adaptation in the industrial process, the exponential development in aquaculture sector allows the obtention of this raw material in a sustained way. Extract functionality was attributed to its demarked inhibitory action on enzymatic activities of polyphenol oxidase and peroxidase, two major enzymes involved in enzymatic browning processes.  相似文献   

16.
Sensory evaluation of four different formulations of Aloe vera-litchi mixed fruit beverage (ALMB) was carried out by a semi-trained sensory panel, and the corresponding sensory data was considered for similarity analysis using fuzzy logic. Based on the similarity analysis, the optimum formulation of ALMB was selected with litchi juice (85%):Aloe vera juice (15%, v/v). Further, the effect of high pressure thermal processing (HPTP) on the quality attributes namely physicochemical, nutritional, enzyme activity and the microbial population was evaluated within the domain of 400–600 MPa/30–60 °C/0–15 min as processing condition. The physicochemical properties such as pH, TSS and acidity of ALMB were minimally affected by HPTP, whereas, the loss of ascorbic acid up to 40% and the natural color of the ALMB samples was affected. The increased extractability of phenolics and antioxidants was observed for the samples treated at all the pressures and temperature up to 50 °C. Pectinmethylesterase (PME) was found to be the most baro-resistant enzyme with the maximum inactivation of up to 54% followed by peroxidase (POD) (72%) and polyphenoloxidase (PPO) (82%). The microbial inactivation during the isobaric period was well described by the first-order model (R2 > 0.82); yeast and mold group was found to be the most baro-resistant among the entire studied natural microflora.Industrial relevanceThe present study gives information on fuzzy logic based similarity analysis technique for ranking of different fruit based formulation as well as ranking of its quality attributes. This technique can be used by the industry to process the linguistic data of sensory analysis and make appropriate decisions for product development. High pressure thermal processing can be efficiently used to develop high quality beverage products.  相似文献   

17.
This study was carried out to investigate the impact of high pressure processing (HPP) at different pressure (200, 400 and 600 MPa) and treatment times (5, 9 and 15 min) on ascorbic acid, total phenolics, anthocyanin stability and total antioxidant capacity, were also studied at different physicochemical parameters such as pH, °Brix and color. HPP treatments resulted in more than 92% vitamin C retention at all treatment intensities. On the other hand, total phenolic content in the juice was increased, mainly after HPP at 200 MPa for all treatment times. The total and monomeric anthocyanin were similar or higher than the value estimated for the fresh juice being maximum at 400 MPa/15 min (16% increase). Antioxidant capacity values were not statistically different for treatments at 200 MPa for 5–15 min in comparison with fresh juice, however for 400 MPa/15 min and 600 MPa for all times (8–16% reduction), the lowest values were observed for total antioxidant capacity determined with TEAC method. No significant changes were observed in pH and °Brix. Color changes (a*, b*, L* and ΔE) were not visually noticeable for pressurized beverage for all pressures and times.  相似文献   

18.
High pressure processing (HPP) is a promising food preservation technology as an alternative to thermal processing for microbial inactivation. The technological parameters, the type of microorganism, and the food composition can greatly affect the microbicidal potential of HPP against spoilage and pathogenic microorganisms. Presently, the number of available models quantifying the influence of food characteristics on the pathogen inactivation is scarce. The aim of this study was to model the inactivation of Listeria monocytogenes CTC1034 in dry-cured ham, as a function of pressure (347–852 MPa, 5 min/15 °C), water activity (aw, 0.86–0.96) and fat content (10–50%) according to a Central Composite Design. The response surface methodology, based on the equation obtained with a stepwise multivariate linear regression, was used to describe the relationship between bacterial inactivation and the studied variables. According to the best fitting polynomial equation, besides pressure intensity, both aw and fat content exerted a significant influence on HP-inactivation of L. monocytogenes. A clear linear piezoprotection trend was found lowering the aw of the substrate within the whole range of tested pressure. Fat content was included in the model through the quadratic term and as interaction term with pressure, resulting in a particular behavior. A protective effect due to the presence of high fat content was identified for pressure treatments above ca. 700 MPa. At lower pressure, higher inactivation of L. monocytogenes occurred by increasing the fat content above 30%. The results emphasize the relevant influence of intrinsic factors on the L. monocytogenes inactivation by HPP, making necessary to assess and validate the effectiveness of HPP on specific food products and consequently set process criteria adjusted to each particular food product.  相似文献   

19.
This study was undertaken with an aim to enhance the enzyme inactivation during high pressure processing (HPP) with pH and total soluble solids (TSS) as additional hurdles. Impact of mango pulp pH (3.5, 4.0, 4.5) and TSS (15, 20, 25 °Brix) variations on the inactivation of pectin methylesterase (PME), polyphenol oxidase (PPO), and peroxidase (POD) enzymes were studied during HPP at 400 to 600 MPa pressure (P), 40 to 70 °C temperature (T), and 6‐ to 20‐min pressure‐hold time (t). The enzyme inactivation (%) was modeled using second order polynomial equations with a good fit that revealed that all the enzymes were significantly affected by HPP. Response surface and contour models predicted the kinetic behavior of mango pulp enzymes adequately as indicated by the small error between predicted and experimental data. The predicted kinetics indicated that for a fixed P and T, higher pulse pressure effect and increased isobaric inactivation rates were possible at lower levels of pH and TSS. In contrast, at a fixed pH or TSS level, an increase in P or T led to enhanced inactivation rates, irrespective of the type of enzyme. PPO and POD were found to have similar barosensitivity, whereas PME was found to be most resistant to HPP. Furthermore, simultaneous variation in pH and TSS levels of mango pulp resulted in higher enzyme inactivation at lower pH and TSS during HPP, where the effect of pH was found to be predominant than TSS within the experimental domain.  相似文献   

20.
The effect of dense phase-CO2 processing (DP-CO2) on polyphenol oxidase (PPO) activity, polyphenolic and antioxidant changes in muscadine grape juice under different processing pressures (27.6, 38.3, and 48.3 MPa) and CO2 concentrations (0, 7.5, and 15%) were measured. Subsequently two DP-CO2 conditions (48.3 MPa at 0 or 15% CO2) were evaluated for polyphenolic and antioxidant changes during storage (4 °C, four weeks). Pressure alone was responsible for a 40% decrease in PPO activity that resulted in 16–40% polyphenolic and antioxidant losses. Increasing CO2 from 0 to 7.5% was responsible for an additional 35% decrease in enzyme activity and a two-fold greater polyphenolic retention. However, insignificant changes in PPO activity or polyphenolic retention were observed when CO2 was increased to 15%. During storage, juices with residual PPO activity following processing resulted in greater polyphenolic (8- to 10-fold) and antioxidant capacity (four-fold) degradation compared to control juices with no PPO activity. This study demonstrated that partial PPO inactivation can be obtained by DP-CO2 and that CO2 level was the primary variable influencing PPO activity and polyphenolics and antioxidant capacity retention in muscadine grape juice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号