首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Detailed comparison of various properties (concentration of soluble solids, purity, nature of impurities, coloration and filterability) of sugar beet juices obtained by pulsed electric field (PEF) assisted “cold” extraction (T = 30 and 50 °C) and classical “hot” extraction (T = 70 °C) was done. It was shown that application of PEF-assisted “cold” extraction results in lower concentration of colloidal impurities (especially, pectins), lower coloration and better filterability of juice. Concentration of various colorants and their intermediates decreased significantly with decreasing of the extraction temperature from 70 °C to 30 °C. Filtrate obtained by dynamic filtration of juice extracted with PEF treatment had a high purity (95.3 ± 0.4%) and low coloration (1.2×103 IU). Obtained data suggest that PEF-assisted “cold” extraction is a promising method for preparation of sugar beet juices with high purity.  相似文献   

2.
Sugar beet press water is one of the main wastewater in the sugar industry, which presently returned to the diffuser with no further treatment. Some form of treatment, such as pretreatment with membrane may however, improved the output efficiency of sugar plants. In this study, nanofiltration membrane (AFC80) were used to investigate the permeate flux, fouling percent and rejection percent of most important molassogenic ions (sodium and potassium) and sucrose. Sugar beet press water was provided by Abkoh sugar beet factory. The effect of operating parameters such as temperature (at levels of 25,40and 55 °C), trans membrane pressure (at levels of 10,15and 20 bar) on nanofiltration performance (permeate flux, fouling and rejection) were investigated. The results show that maximum permeate flux is obtained at 55 °C and 20 bar, while the average value is 49.27 kgm-2h-1. The minimum permeate flux is obtained at 25 °C and 10 bar, and the average value in this conditions is 14.63 kgm-2h-1. Maximum and minimum fouling are reached at 55 °C and 20 bar and 25 °C and 15 bar, respectively. Furthermore maximum rejection of sodium and potassium (84.3% and 72.5% respectively) is obtained at 25 °C and 20 bar, and minimum of rejection of sodium and potassium (74.3% and 69.05% respectively) is obtained on 55 °C and 10 bar. For all operating conditions, sucrose rejection was exceeded 95%. Variation in operating conditions had no significant effect on sucrose rejection.  相似文献   

3.
The impact of apple pretreatment by pulsed electric field (PEF) on juice extraction using the freezing-assisted pressing was studied. Apple discs were PEF pretreated at electric field strength of E = 800 V/cm and then air blast frozen inside the freezer (− 40 °C). Then, pressing experiments in a laboratory-pressing chamber (2–5 bars) were started at sub-zero temperature (− 5 °C). Time evolution of juice yield and its nutritional qualities were compared for PEF and untreated apple samples. High improvements of juice yield were obtained for freeze-thawed (FT) and PEF + FT samples. The combination of PEF + pressing (5 bar) at sub-zero temperature gave optimum results for juice extraction with high levels of carbohydrates, and antioxidant bioactive compounds. At fixed value of extraction yield, Y, PEF pretreatment improved nutritional parameters. E.g., at Y = 0.6, an increase in °Brix (by ≈ 1.27), carbohydrates (by ≈ 1.42), total phenolic compounds (by ≈ 1.16), flavonoids (by ≈ 1.09) and antioxidant capacity (by ≈ 1.29) was observed after PEF pretreatment.Industrial relevancePressing constitutes one of the most commonly used technologies at industrial scale to obtain fruit juices. However, during the pressing some undesirable chemical, physical and biological changes may occur in juices, thus reducing their nutritional and sensorial properties. For instance, the use of freezing-assisted pressing is a promising technique for the production of juice concentrates rich in sugars and other solids as the low temperature operation prevents undesirable modifications. But this method is rather expensive and requires strong control of the quality of “ice” juices, their sensory and compositional profiles. Thus, there is an increased search for obtaining new efficient methodologies for producing high quality juices. In this line, PEF-assisted pressing has been shown as a useful technology to increase juice yield. Therefore, the combination of PEF-assisted “ice” juice extraction by pressing of fruits at subzero temperatures may be a useful tool to improve the extraction yield of juices, thus improving their nutritional, physicochemical and sensorial properties.Keywords: “Ice” juice, Apple, Pulsed electric fields, Freezing-assisted pressing  相似文献   

4.
Regime (direction, amount, rate, and pattern) of change in aroma active compounds was quantified as a function of four pulsed electric field (PEF) treatment times, three fruits, and 10 physical and eight sensory properties using the best-fit multiple linear regression (MLR) models. The PEF treatment times did not deteriorate 94% of the sensory properties and 70% of the physical properties and significantly change 57% of a total of 73 aroma active compounds detected for sour cherry juice, and apricot and peach nectars. The best performing MLR models belonged to 1-methyl-4-prop-1-en-2-ylcyclohexene as a function of fruit type, treatment time, and titratable acidity (= 49 mg/L; Radj2 = 95.7%; Rcv2 = 94.9%) and to 2-[(2S,5S)-5-ethenyl-5-methyloxolan-2-yl]propan-2-ol as a function of fruit type, and treatment time (SE = 157 mg/L; Radj2 = 98.2%; Rcv2 = 98.0%), respectively (n = 48; p < 0.001).Industrial relevancePulsed electric field (PEF) is one of the leading nonthermal food technologies especiallyfor processing of high acid low viscosity foods with satisfactory quality and microbial inactivation. It was shown in this study that PEF with different treatment times can successfully be applied in the pasteurization of sour cherry juice, and apricot and peach nectars with minimum loss of aroma active compounds and sensory and physical properties. Both PEF processing conditions and results can be used as a guide to determine PEF processing parameters for industrial scale processing of juices/nectars.  相似文献   

5.
The osmotic dehydration (OD) kinetics of carrot disc untreated and treated by pulsed electric field (PEF) was studied under centrifugation (2400 × g), stirring (250 rpm) and with a salt addition (NaCl/sucrose solutions 0%/65%, 5%/60% and 15%/50%). The PEF intensity was E = 0.60 kV/cm and the treatment duration was tPEF = 0.05 s (500 rectangular monopolar pulses each of 100 μs). The water loss (WL), solids gain (SG) and water loss/solids gain ratios (WL/SG) were evaluated in the binary (sucrose + water) and ternary (sucrose + salt + water) solutions at the temperature of 20 °C during 4 h. The mass ratio of sample to solution was 1:3. The PEF treatment and salt addition enhanced the OD kinetics. WL and SG were increased under centrifugation (centrifugal OD) and under stirring (static OD). The centrifugal field enhanced the WL, however, decreased the SG comparing to the static OD. Therefore, the static OD has advantages for the higher SG (confectionary adds), while the centrifugal OD is better appropriated if the WL should be increased and the solids (sugar) uptake should be limited (dietetic products).The two-exponential kinetic model fitted well to experimental data for both static and centrifugal OD. The correlation coefficient was R2 = 0.982–0.999 and the standard error was 5–10%.  相似文献   

6.
The efficacy of using sonication (50 ± 0.2 W, 20 kHz), combined with subsequent concentration and storage at high osmotic pressure, has been evaluated to reduce levels of Salmonella bacteria in different solutions (PBS, sucrose and orange juice) at varying concentrations. To visualize the impact on cell membranes, we used a staining protocol (propidium iodide [PI] and 4′,6′-diamidino-2-phenylindole [DAPI]). Sonication alone did not cause significant membrane damage. Storage alone, for 48 h and at high osmotic pressure (10.9 MPa), affected membrane permeability in 20% of cells. However, sonication, combined with storage, considerably increased loss of membrane integrity, resulting in a significant logarithmic reduction of microorganisms. When the combination was applied to contaminated orange juice, a 5 log10 cfu ml?1 reduction of Salmonella spp. was obtained. “Osmosonication”—the synergistic combination of sonication and subsequent storage at high osmotic pressure—is an innovative alternative for the non-thermal decontamination of liquid foods.  相似文献   

7.
《Food chemistry》2005,92(2):357-363
Aqueous solutions of sugars (xylose, arabinose, fructose, glucose or sucrose), alone or in the presence of amino acid (lysine), were γ-irradiated at 0, 5, 10, 20 and 30 kGy at room temperature. Also evaluated were differences between irradiation and heat treatment. Absorbances at 420 nm, of the irradiated sugar–amino acid solutions, were increased although no browning was observed in the irradiated sugar or amino acid alone. The degree of browning of the irradiated sugar–amino acid solution increased with increasing irradiation dose and was dependent on the type of sugar. The non-reducing sugar, sucrose, did not react with lysine by heating for 4 h at 80 °C; however, the irradiated sucrose–lysine solution showed the non-enzymatic browning reaction and it had a higher reactivity than other sugars. For the sugar–lysine solution irradiated at 30 kGy, browning was in the following order of intensity: sucrose > fructose > arabinose > xylose > glucose. Furfural compounds (5-hydroxymethylfurfural and 2-furaldehyde) were not detected in any irradiated samples.  相似文献   

8.
Sweetness is generally a desirable taste, however consumers can be grouped into sweet likers and dislikers according to optimally preferred sucrose concentrations. Understanding the levels of sweetness in products that are acceptable and unacceptable to both consumer groups is important to product development and for influencing dietary habits. The concentrations at which sucrose decreases liking (the rejection threshold; RjT) in liquid and semi-solid matrices were investigated in this study. Thirty six consumers rated their liking of 5 sucrose aqueous solutions; this identified 36% sweet likers (SL) whose liking ratings increased with increasing sucrose and 64% sweet dislikers (SD) whose liking ratings decreased above 6% (w/v) sucrose. We hypothesized that SL and SD would have different RjT for sucrose in products. This was tested by preparing 8 levels of sucrose in orange juice and orange jelly and presenting each against the lowest level in forced choice preference tests. In orange juice, as sucrose increased from 33 g/L to 75 g/L the proportion of people preferring the sweeter sample increased in both groups. However, at higher sucrose levels, the proportion of consumers preferring the sweet sample decreased. For SD, a RjT was reached at 380 g/L, whereas a significant RjT for SL was not reached. RjT in jelly were not reached as the sweetness in orange jelly was significantly lower than for orange juice (p < 0.001). Despite statistically significant differences in rated sweetness between SL and SD (p = 0.019), the extent of difference between the two groups was minor. The results implied that sweet liker status was not substantially related to differences in sweetness perception. Self-reported dietary intake of carbohydrate, sugars and sucrose were not significantly affected by sweet liker status. However the failure to find an effect may be due to the small sample size and future studies within a larger, more representative population sample are justifiable from the results of this study.  相似文献   

9.
The influence of pulsed electric field (PEF) treatment on the extraction by pressing of total polyphenols and flavonoids (naringin and hesperin) from orange peel was investigated. A treatment time of 60 μs (20 pulses of 3 μs) achieved the highest cell disintegration index (Zp) at the different electric field strengths tested. After 30 min of pressurization at 5 bars, the total polyphenol extraction yield (TPEY) increased 20%, 129%, 153% and 159% for orange peel PEF treated at 1, 3, 5 and 7 kV/cm, respectively. A PEF treatment of 5 kV/cm to the orange peels increased the quantity of naringin and hesperidin in the extract of 100 g of orange peels from 1 to 3.1 mg/100 g of fresh weigh (fw) orange peel and from 1.3 to 4.6 mg100 g fw orange peel respectively. Compared to the untreated sample, PEF treatments of 1, 3, 5 and 7 kV/cm increased the antioxidant activity of the extract 51%, 94%, 148% and 192%, respectively.The results of this investigation demonstrate the potential of PEF as a gentle technology to improve the extraction by pressing of polyphenols from fresh orange peel. This procedure enhances the antioxidant capacity of the extracts, reduces extraction times and does not require using organic solvents.Industrial relevanceProcessing of orange fruits to obtain fresh juice or citrus-based drinks generates very large amounts of byproduct wastes, such as peels that are a rich source of polyphenols mainly flavonoids. Extraction of these compounds from orange peels is a crucial step for use of these compounds in the food and pharmaceutical industries as antioxidants. PEF-assisted extraction by pressing of polyphenols from fresh orange peels stands as an economical and environmentally friendly alternative to conventional extraction methods which require the product to be dried, use large amounts of organic solvents and need long extraction times.  相似文献   

10.
Pulsed electric field (PEF) is a promising non-thermal food preservation technology. The objective was to study inactivation of yeasts in PEF-treated kombucha analogues prepared from Quercus obtusata infusions. Fermentation conditions of infusions from Q. obtusata were time (7 days), sugar (10%), starting culture (10%), and inoculum (2.5%, at 25 °C). The PEF treatment considered using square waves, an electric field strength (37.3–53.4 kV/cm), PEF processing time (445.3–1979.2 μs), an output temperature (18.31 ± 0.98 °C), an input energy (21.2 - 136.5 KJ/L), and two feed flow rates (51.42 and 102.85 L/h). pH, °Brix, color determinations, microbiological testing, total phenolic, flavonoid content, DPPH test, and UPLC/ESI/MS/MS analysis were done. No changes at different PEF conditions were observed for pH and °Brix. Higher color changes were observed at higher specific energies. Acid-acetic bacteria were more sensitive to PEF than yeasts. Lower specific energies render products with higher polyphenolic content and antioxidant capacity.Industrial relevancePulse electric field is an interesting alternative to preserve kombucha analogues from oak leave infusions with minimal changes in physicochemical characteristics, antioxidant activity and bioactive compounds. The present work describes the effect of feed flow and specific energy on the several characteristics of fermented beverages, determining conditions for best processing.  相似文献   

11.
The effects of the operating conditions on the crossflow microfiltration (CFMF) of particulate suspensions were investigated. Lactalbumin particles were used as the feed material. Experiments were carried out in constant transmembrane pressure (TMP) mode using tubular ceramic membrane modules. All important parameters (internal and surface fouling, cake mass, height, porosity, and particle size distribution (PSD)) were estimated to provide a more complete understanding of the process than has been attempted before. Lactalbumin particles which are highly irregular in shape and widely size distributed formed an adhesive cake on the membrane surface during CFMF. The porosity and particle size of the deposited cake decreased with time of filtration. The value 100 kPa was found to be optimum with respect to the permeate flux in the studied range of TMP. Particle size classification effects of TMP and crossflow velocity (CFV) were demonstrated. The results of this study provided a possible explanation to the contradictory reports on the effect of CFV on the steady-state flux and the time required to obtain it. Significantly, the internal fouling first decreased with increasing CFV and then increased above 1.5 m s−1. This is attributed to the particles size classification effect of CFV. A process was developed based on the observed effects of the operating parameters on the CFMF performance that enables operation at very low internal fouling and high flux for as long as 160 min. The developed process has the potential to become commercial if coupled with backflushing.  相似文献   

12.
The influence of apple mash treatment with pulsed electric fields (PEF) on yield and quality attributes of the resulting cloudy juices were investigated. Apple juice was produced at laboratory scale (400 g apples per lot) by mash treatment with pulsed electric fields at three different field intensities (1, 3, 5 kV/cm, n = 30 pulses) and manual pressing at room temperature. The juices were compared with untreated control juices of the same mash and with a juice after pectolytic mash treatment. Relative to the control samples, juice yield increased with increasing field intensities. The overall composition as described by pH, total soluble solids, total acidity, density, contents of sugar, malic acid and pectin, respectively, as well as the nutritive value with respect to polyphenol contents and antioxidant capacities (TEAC, FRAP, DPPH) of the PEF-treated apple juices did not significantly differ from the controls.Industrial relevanceThis paper addresses the composition of apple juice after mash treatment applying pulsed electric fields and maceration enzymes, respectively. Since substantial equivalence of products derived from novel technologies, such as PEF, relative to their conventionally produced counterparts is required according to European food law, this aspect is of great relevance, especially for commercialisation of fruit juices based on PEF technology. Furthermore, the nutritional value of juices produced at different pulsed electric field activities is of relevance for their marketing.  相似文献   

13.
The influence of pulsed electric field (PEF) treatment on the anthocyanin extraction yield (AEY) from purple-fleshed potato (PFP) at different extraction times (60–480 min) and temperatures (10–40 °C) using water and ethanol (48% and 96%) as solvents has been investigated. Response surface methodology was used to determine optimal PEF treatment and optimise anthocyanin extraction. A PEF treatment of 3.4 kV/cm and 105 μs (35 pulses of 3 μs) resulted in the highest cell disintegration index (Zp = 1) at the lowest specific energy requirements (8.92 kJ/kg). This PEF treatment increased the AEY, the effect being higher at lower extraction temperature with water as solvent. After 480 min at 40 °C, the AEY obtained for the untreated sample using 96% ethanol as the solvent (63.9 mg/100 g fw) was similar to that obtained in the PEF-treated sample using water (65.8 mg/100 g fw). Therefore, PEF was possible with water, a more environmental-friendly solvent than ethanol, without decreasing the AEY from PFP.  相似文献   

14.
《Food chemistry》1999,65(4):445-451
The headspace flavor compounds of fresh squeezed orange juice processed by pulsed electric field (PEF) at 30 kV/cm for 240 or 480 μs, or heat at 90°C for 1 min were isolated by a solid phase microextraction (SPME) coating and separated by gas chromatography. The average losses of flavor compounds in orange juice processed by 240, 480 μs PEF and heat process were 3.0%, 9.0% and 22.0%, respectively (P < 0.05). The flavor loss was mainly due to vacuum degassing in the PEF process. The total plate counts of control, 240, 480 μs PEF, and heat processed orange juice were 5400, 21, 19, and 4, respectively. The yeast and mold counts of control, PEF for 240, 480 μs and heat processed orange juice were 2800, 15, 9, and 4, respectively. ©  相似文献   

15.
The influence of various environmental factors on Enterobacter sakazakii inactivation by pulsed electric fields was studied and the mechanisms underlying the changes in resistance were also explored. E. sakazakii PEF resistance was higher upon entering the stationary growth phase, but it did not significantly change with growth temperature. E. sakazakii cells were also more resistant to PEF in both acidified and low water activity media. Thus, for stationary-phase cells grown at 30 °C a treatment of 50 pulses at 31 kV/cm led to 5.1 log10 cycles of inactivation in media of pH 7.0 (aw > 0.99), 1.4 log10 cycles in media of pH 4.0 (aw > 0.99) and 0.3 log10 cycles in media of aw = 0.98 (pH 7.0). However, whereas the higher PEF tolerance in acid media was coincident with an increased number of cells capable of repairing their sublethally-injured cytoplasmic membranes, the higher resistance in media of lower water activity was not. To the best of our knowledge, this is the first time that sublethal injuries in outer membrane after PEF treatments have been found.Industrial relevanceThis work provides data about PEF inactivation kinetics and PEF resistance of E. sakazakii under several conditions that might be useful for designing food pasteurization processes by PEF technology. The occurrence of sublethal injuries in cytoplasmic and outer membranes under the most protective treatment conditions, gives the chance to develop combined processes that might increase the effectiveness of the PEF process.  相似文献   

16.
Effects of different growth temperatures on cytoplasmic membrane fluidity and phospholipids phase transition temperature (Tm) of Salmonella typhimurium and resistance to pulsed electric field (PEF) inactivation, as well as the expression of stress-related genes and fatty acid biosynthesis-associated genes were investigated. Results indicated that the PEF resistance of S. typhimurium increased as growth temperature increased. S. typhimurium cultivated at 10 °C exhibited the lowest PEF resistance with the reduction of 4.23 log10 CFU/mL, while the reduction of 2.10 log10 CFU/mL was found in S. typhimurium cultivated at 45 °C under the same PEF treatment, due to the up-regulation of the expression of fabA gene, which was characterized by the lowest Tm of membrane phospholipids and the greatest membrane fluidity. Although the expression of alternative sigma factors were altered by growth temperature, these genes were not essential for S. typhimurium to develop PEF resistance, suggesting that the PEF resistance modified by growth temperature could be caused by alterations in membrane fluidity.Industrial relevancePulsed electric fields (PEF) treatment has been widely applied in nonthermal pasteurization and increasingly focused on synergistic combinations with other techniques such as thermal treatment, sonication and antibacterial agents to improve the efficacy of PEF to inactivate micro-organisms. Our results indicated that S. typhimurium cultivated at relatively lower temperature was easily inactivated by PEF, due to the up-regulation of the expression of fabA gene, which was characterized by the lowest phase transition temperature of cytoplasmic membrane phospholipids and the greatest membrane fluidity. Therefore, the underlying mechanism of alterations in PEF resistance of S. typhimurium induced by growth temperature was explored to achieve better understanding of microbial inactivation by PEF.  相似文献   

17.
《LWT》2005,38(1):73-75
Red beets were evaluated as a potential substrate for the production of probiotic beet juice by four species of lactic acid bacteria (Lactobacillus acidophilus, Lactobacillus casei, Lactobacillus delbrueckii, Lactobacillus plantarum). All the lactic cultures were found capable of rapidly utilizing beet juice for cell synthesis and lactic acid production. However, L. acidophilus and L. plantarum produced a greater amount of lactic acid than other cultures and reduced the pH of fermented beet juice from an initial value of 6.3 to below 4.5 after 48 h of fermentation at 30°C. Although the lactic cultures in fermented beet juice gradually lost their viability during cold storage, the viable cell counts of these lactic acid bacteria except for L. acidophilus in the fermented beet juice still remained at 106–108 CFU/ml after 4 weeks of cold storage at 4°C.  相似文献   

18.
The present work discusses the efficiency of pulsed electrical treatments for the inactivation of yeasts. The application of pulsed electric fields (PEFs) and high voltage electrical discharges (HVEDs) as alternatives to sulfites, which are used as anti-microbial to stop the fermentation of sweet white wine, was investigated. The influence of sulfite concentration (from 0 mg·L 1 to 500 mg·L 1), PEF (from 4 kV·cm 1 to 20 kV·cm 1; from 0.25 ms to 6 ms) and HVED (40 kV/cm; 1 ms or 4 ms) treatments on the inactivation of total yeasts and non-Saccharomyces yeasts was determined. The addition of SO2 (250 mg·L 1) resulted in 8 log total yeast reduction. The maximum yeast inactivation obtained with PEF and HVED was respectively 3 and 4 logs. The use of SO2, HVED and PEF allows decreasing the non-Saccharomyces yeast level by 7, 5 and 4 logs respectively. However, the wine browning was less pronounced for the samples treated by PEF in comparison with HVED and SO2 treatments. PEF seems to be the most suitable alternative technique to sulfite addition.  相似文献   

19.
This study describes experiments on pulsed electric field (PEF)-assisted water extraction of sugar from sugar beet using a pilot countercurrent extractor with 14 extraction sections. Cossettes were prepared from sugar beet by industrial knives and PEF treatment of the cossettes was done with electric field strength E varied between 100 and 600 V/cm. The total time of PEF treatment was tPEF = 50 ms. The effects of the main extraction parameters (temperature of extracting water and draft) on the extraction kinetics, as well as on the juice and cossette (pulp) characteristics, were investigated. The temperature of extraction from PEF-treated cossettes was varied from 30 to 70 °C; the draft was varied from 120 to 90%. The principal possibility of cold (at 30 °C) and moderate thermal (50-60 °C) extraction of sucrose from sugar beet cossettes treated by PEF was confirmed on the pilot countercurrent extractor. The purity of the juice obtained by cold and moderate thermal extraction was not lower than the purity of juice obtained by conventional hot water diffusion at 70 °C. The sugar beet pulp can be well exhausted by cold or mild thermal extraction of cossettes treated by PEF. Decrease of draft to 100-90% permitted increasing of the extracted juice concentration, but the cossettes were worse exhausted. The pulp obtained by cold extraction of PEF-treated cossettes had dryness >30%, which was noticeably higher than dryness of the pulp obtained by conventional hot water extraction technique.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号