首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polyketide synthases (PKSs) use simple extender units to synthesize complex natural products. A fundamental question is how different extender units are site-specifically incorporated into the growing polyketide. Here we established phoslactomycin (Pn) PKS, which incorporates malonyl- and ethylmalonyl-CoA, as an in vitro model to study substrate specificity. We combined up to six Pn PKS modules with different termination sites for the controlled release of tetra-, penta- and hexaketides, and challenged these systems with up to seven different extender units in competitive assays to test for the specificity of Pn modules. While malonyl-CoA modules of Pn PKS exclusively accept their natural substrate, the ethylmalonyl-CoA module PnC tolerates different α-substituted derivatives, but discriminates against malonyl-CoA. We show that the ratio of extender transacylation to hydrolysis controls incorporation in PnC, thus explaining site-specific selectivity and promiscuity in the natural context of Pn PKS.  相似文献   

2.
Drug discovery often begins with the screening of large compound libraries to identify lead compounds. Recently, the enzymes that are involved in the biosynthesis of natural products have been investigated for their potential to generate new, diverse compound libraries. There have been several approaches toward this end, including altering the substrate specificities of the enzymes involved in natural product biosynthesis and engineering functional communication between enzymes from different biosynthetic pathways. While there exist assays to assess the substrate specificity of enzymes involved in these pathways, there is no simple method for determining whether enzymes from different synthases will function cooperatively to generate the desired product(s). Herein we report a method that provides insight into both substrate specificity and compatibility of protein-protein interactions between the acyl carrier protein (ACP) and ketosynthase (KS) domains involved in fatty acid and polyketide biosynthesis. Our technique uses a one-pot chemoenzymatic method to generate post-translationally modified ACPs that are capable of covalently interacting with KS domains from different biosynthetic systems. The extent of interaction between ACPs and KSs from different systems is easily detected and quantified by a gel-based method. Our results are consistent with previous studies of substrate specificity and ACP-KS binding interactions and provide new insight into unnatural substrate and protein interactions.  相似文献   

3.
Uncultivated bacterial symbionts from the candidate genus “Entotheonella” have been shown to produce diverse natural products previously attributed to their sponge hosts. In addition to these known compounds, “Entotheonella” genomes contain rich sets of biosynthetic gene clusters that lack identified natural products. Among these is a small type III polyketide synthase (PKS) cluster, one of only three clusters present in all known “Entotheonella” genomes. This conserved “Entotheonella” PKS (cep) cluster encodes the type III PKS CepA and the putative methyltransferase CepB. Herein, the characterization of CepA as an enzyme involved in phenolic lipid biosynthesis is reported. In vitro analysis showed a specificity for alkyl starter substrates and the production of tri- and tetraketide pyrones and tetraketide resorcinols. The conserved distribution of the cep cluster suggests an important role for the phenolic lipid polyketides produced in “Entotheonella” variants.  相似文献   

4.
Mycolactone, a polyketide toxin responsible for the extensive tissue destruction seen in Buruli ulcer, is assembled on a modular polyketide synthase (PKS). Despite operating on structurally different intermediates during synthesis, many of the ketoreductase (KR) domains of the mycolactone (MLS) PKS have identical sequences. This suggests that these enzymes might exhibit an unusually high level of substrate promiscuity. However, we show here that when recombinant mycolactone KR domains are tested with a range of surrogate substrates, their specificity closely matches that of KR domains derived from other PKS systems. In addition, our findings reinforce the role of substrate tethering for achieving stereochemical control in modular PKSs by affecting the delicate energetics of ketoreduction.  相似文献   

5.
Fogacin and two novel fogacin derivatives, fogacins B and C, were isolated from the rare actinomycete Actinoplanes missouriensis. Biosynthesis of fogacin C apparently requires β alkylation of a polyketide chain. The fogacin biosynthetic type II polyketide synthase (PKS) gene cluster contains a hydroxymethylglutaryl-coenzyme A synthase (HCS) cassette, which is usually responsible for β alkylation in the type I PKS system. Another characteristic of the fog cluster is that it encodes two sets of ketosynthase (KS) and chain-length factor (CLF). Inactivation of either of the two KS genes in A. missouriensis and heterologous expression of the HCS cassette with either of the two KS-CLF genes in Streptomyces albus indicated that each KS-CLF had a different starter substrate specificity: one preferred an unusual β-alkylated starter and the other preferred a normal acetyl starter. This study expands knowledge of HCS cassette-dependent β alkylation into the type II PKS system and provides a natural example of combinatorial biosynthesis for producing diverse polyketides from different starter substrates.  相似文献   

6.
Iterative type I polyketide synthases (PKSs) from fungi are multifunctional enzymes that use their active sites repeatedly in a highly ordered sequence to assemble complex natural products. A phytotoxic macrolide with anticancer properties, 10,11‐dehydrocurvularin (DHC), is produced by cooperation of a highly reducing (HR) iterative PKS and a non‐reducing (NR) iterative PKS. We have identified the DHC gene cluster in Alternaria cinerariae, heterologously expressed the active HR PKS (Dhc3) and NR PKS (Dhc5) in yeast, and compared them to corresponding proteins that make DHC in Aspergillus terreus. Phylogenetic analysis and homology modeling of these enzymes identified variable surfaces and conserved motifs that are implicated in product formation.  相似文献   

7.
Polyketide natural products such as erythromycin and rapamycin are assembled on polyketide synthases (PKSs), which consist of modular sets of catalytic activities distributed across multiple protein subunits. Correct protein-protein interactions among the PKS subunits which are critical to the fidelity of biosynthesis are mediated in part by "docking domains" at the termini of the proteins. The NMR solution structure of a representative docking domain complex from the erythromycin PKS (DEBS) was recently solved, and on this basis it has been proposed that PKS docking is mediated by the formation of an intermolecular four-alpha-helix bundle. Herein, we report the genetic engineering of such a docking domain complex by replacement of specific helical segments and analysis of triketide synthesis by mutant PKSs in vivo. The results of these helix swaps are fully consistent with the model and highlight residues in the docking domains that may be targeted to alter the efficiency or specificity of subunit-subunit docking in hybrid PKSs.  相似文献   

8.
Salinipyrones and pacificanones are structurally related polyketides from Salinispora pacifica CNS‐237 that are proposed to arise from the same modular polyketide synthase (PKS) assembly line. Genome sequencing revealed a large macrolide PKS gene cluster that codes for the biosynthesis of rosamicin A and a series of new macrolide antibiotics. Mutagenesis experiments unexpectedly correlated salinipyrone and pacificanone biosynthesis to the rosamicin octamodule Spr PKS. Remarkably, this bifurcated polyketide pathway illuminates a series of enzymatic domain‐ and module‐skipping reactions that give rise to natural polyketide product diversity. Our findings enlarge the growing knowledge of polyketide biochemistry and illuminate potential challenges in PKS bioengineering.  相似文献   

9.
10.
Fatty acyl-AMP ligases (FAALs) activate fatty acids as acyladenylates, and subsequently catalyze their transfer onto the acyl carrier proteins (ACPs) of polyketide synthases (PKSs) or nonribosomal peptide synthetases to produce lipidic metabolites. Myxococcus xanthus contains a polyketide biosynthesis gene cluster in which putative FAAL (FtpD) and ACP (FtpC) genes are located close to a type III PKS (FtpA) gene. Here we describe the characterization of these three proteins in vitro. FtpD adenylated stearic acid and produced stearoyl-FtpC. The stearoyl moiety was then transferred to FtpA. When extender substrates (malonyl-CoA and methylmalonyl-CoA) were added to the reaction, the alkylresorcinol 5-heptadecyl-4-methyl-benzene-1,3-diol was synthesized. Further in vitro analysis indicated that FtpA produces an alkylresorcylic acid as the direct product, and that this decarboxylates to alkylresorcinol nonenzymatically. This is the first report of a FAAL supplying a long-chain fatty acyl-ACP starter substrate to a type III PKS.  相似文献   

11.
Fungal hybrid enzymes consisting of a polyketide synthase (PKS) and a nonribosomal peptide synthetase (NRPS) module are involved in the biosynthesis of a vast array of ecologically and medicinally relevant natural products. Whereas a dozen gene clusters could be assigned to the requisite PKS–NRPS pathways, the programming of the multifunctional enzymes is still enigmatic. Through engineering and heterologously expressing a chimera of PKS (lovastatin synthase, LovB) and NRPS (cytochalasin synthase, CheA) in Aspergillus terreus, we noted the potential incompatibility of a fungal highly reducing PKS (hrPKS) with the NRPS component of fungal PKS–NRPS hybrids. To rationalize the unexpected outcome of the gene fusion experiments, we conducted extensive bioinformatic analyses of fungal PKS–NRPS hybrids and LovB‐type PKS. From motif studies and the function of the engineered chimeras, a noncanonical function of C‐terminal condensation (C) domains in truncated PKS–NRPS homologues was inferred. More importantly, sequence alignments and phylogenetic trees revealed an evolutionary imprint of the PKS–NRPS domains, which reflect the evolutionary history of the entire megasynthase. Furthermore, a detailed investigation of C and adenylation (A) domains provides support for a scenario in which not only the A domain but also the C domain participates in amino acid selection. These findings shed new light on the complex code of this emerging class of multifunctional enzymes and will greatly facilitate future combinatorial biosynthesis and pathway engineering approaches towards natural product analogues.  相似文献   

12.
A few acyltransferase (AT) domains of modular polyketide synthases (PKSs) recruit acyl carrier protein (ACP)-linked extender units with unusual C2 substituents to confer functionalities that are not available in coenzyme A (CoA)-linked ones. In this study, an AT specific for methoxymalonyl (MOM)-ACP in the third module of the ansamitocin PKS was structurally and biochemically characterized. The AT uses a conserved tryptophan residue at the entrance of the substrate binding tunnel to discriminate between different carriers. A W275R mutation switches its carrier specificity from the ACP to the CoA molecule. The acyl-AT complex structures clearly show that the MOM-ACP accepted by the AT has the 2S instead of the opposite 2R stereochemistry that is predicted according to the biosynthetic derivation from a d -glycolytic intermediate. Together, these results reveal the structural basis of ATs recognizing ACP-linked extender units in polyketide biosynthesis.  相似文献   

13.
The targeted manipulation of polyketide synthases has in recent years led to numerous new-to-nature polyketides. For type I polyketide synthases the response of post-polyketide synthases (PKS) processing enzymes onto the most frequently polyketide backbone manipulations is so far insufficiently studied. In particular, complex processes such as the polyether cyclisation in the biosynthesis of ionophores such as monensin pose interesting objects of research. We present here a study of the substrate promiscuity of the polyether cyclisation cascade enzymes in monensin biosynthesis in the conversion of redox derivatives of the nascent polyketide chain. LC-HRMS/MS2-based studies revealed a remarkable flexibility of the post-PKS enzymes. They acted on derivatized polyketide backbones based on the three possible polyketide redox states within two different modules and gave rise to an altered polyether structure. One of these monensin derivatives was isolated and characterized by 2D-NMR spectroscopy, crystallography, and bioactivity studies.  相似文献   

14.
Epoxyketone proteasome inhibitors have attracted much interest due to their potential as anticancer drugs. Although the biosynthetic gene clusters for several peptidyl epoxyketone natural products have recently been identified, the enzymatic logic involved in the formation of the terminal epoxyketone pharmacophore has been relatively unexplored. Here, we report the identification of the minimal set of enzymes from the eponemycin gene cluster necessary for the biosynthesis of novel metabolites containing a terminal epoxyketone pharmacophore in Escherichia coli, a versatile and fast‐growing heterologous host. This set of enzymes includes a non‐ribosomal peptide synthetase (NRPS), a polyketide synthase (PKS), and an acyl‐CoA dehydrogenase (ACAD) homologue. In addition to the in vivo functional reconstitution of these enzymes in E. coli, in vitro studies of the eponemycin NRPS and 13C‐labeled precursor feeding experiments were performed to advance the mechanistic understanding of terminal epoxyketone formation.  相似文献   

15.
Polyketide natural products such as erythromycin A and epothilone are assembled on multienzyme polyketide synthases (PKSs), which consist of modular sets of protein domains. Within these type I systems, the fidelity of biosynthesis depends on the programmed interaction among the multiple domains within each module, centered around the acyl carrier protein (ACP). A detailed understanding of interdomain communication will therefore be vital for attempts to reprogram these pathways by genetic engineering. We report here that the interaction between a representative ACP domain and its downstream thioesterase (TE) is mediated largely by covalent tethering through a short "linker" region, with only a minor energetic contribution from protein-protein molecular recognition. This finding helps explain in part the empirical observation that TE domains can function out of their normal context in engineered assembly lines, and supports the view that overall PKS architecture may dictate at least a subset of interdomain interactions.  相似文献   

16.
The myxobacterial strain Nannocystis pusilla B150 synthesizes the structurally new polyketides phenylnannolone A–C. Apart from some common volatiles and siderophores, these are the first natural products from the genus Nannocystis. Phenylnannolone A shows inhibitory activity towards the ABCB1 gene product P‐glycoprotein and reverses daunorubicin resistance in cancer cells. To decipher the biochemical reactions leading to the formation of phenylnannolone A, the putative biosynthetic genes were identified (phn1, phn2). Phn2 is a polyketide synthase (PKS) with an NRPS‐like loading module, and its domain order is consistent with the phenylnannolone A structure. The functionality and substrate selectivity of the loading module were determined by means of a γ‐18O4‐ATP pyrophosphate exchange and a phosphopantetheine ejection assay. A specific activation of cinnamic acid by the AMP‐ligase was detected. Phn1 is a putative butyryl‐CoA carboxylase (BCC), providing ethylmalonyl‐CoA for the formation of the ethyl‐substituted part of phenylnannolone A. Phn1 is the first BCC found in biosynthetic genes for an ethyl‐substituted natural compound. Biosynthesis of phenylnannolone A, putatively encoded by phn1 and phn2, thus utilizes the first biosynthetic machinery in which both a BCC and a PKS are involved.  相似文献   

17.
The divinylcyclopropane (DVC) fragment of the ambruticins is proposed to be formed by a unique polyene cyclisation mechanism, in which the unusual didomain AmbG plays a key role. It is proposed to activate the branched thioester carboxylic acid resulting from polyene cyclisation and to transfer it to its associated acyl carrier protein (ACP). After oxidative decarboxylation, the intermediate is channelled back into polyketide synthase (PKS) processing. AmbG was previously annotated as an adenylation–thiolation didomain with a very unusual substrate selectivity code but has not yet been biochemically studied. On the basis of sequence and homology model analysis, we reannotate AmbG as a fatty acyl:adenylate ligase (FAAL)–acyl carrier protein didomain with unusual substrate specificity. The expected adenylate‐forming activity on fatty acids was confirmed by in vitro studies. AmbG also adenylates a number of structurally diverse carboxylic acids, including functionalised fatty acids and unsaturated and aromatic carboxylic acids. HPLC‐MS analysis and competition experiments show that AmbG preferentially acylates its ACP with long‐chain hydrophobic acids and tolerates a π system and a branch near the carboxylic acid. AmbG is the first characterised example of a FAAL–ACP didomain that is centrally located in a PKS and apparently activates a polyketidic intermediate. This is an important step towards deeper biosynthetic studies such as partial reconstitution of the ambruticin pathway to elucidate DVC formation.  相似文献   

18.
Glycosylations are well-established steps in numerous biosynthetic pathways, and the attached sugar moieties often influence the specificity or pharmacology of the modified compounds. The sorangicins belong to the polyketide family of natural products, and exhibit antibiotic activity through inhibition of bacterial RNA polymerase. We have identified the sorangicin biosynthetic gene cluster in the producing myxobacterium Sorangium cellulosum So ce12. Within the cluster, sorF encodes a putative glycosyltransferase. To determine its function in sorangicin biosynthesis, SorF was heterologously expressed as a fusion protein in Escherichia coli. After purification by affinity chromatography, SorF was found to glucosylate sorangicin A in vitro, utilizing UDP-alpha-D-glucose as the natural donor substrate. Additionally, SorF showed high flexibility towards further UDP- and dTDP-sugars and was able to transfer several other sugar moieties-alpha-D-galactose, alpha-D-xylose, beta-L-rhamnose, and 6-deoxy-4-keto-alpha-D-glucose-onto the aglycon. SorF is therefore one of the rare glycosyltransferases able to transfer both D- and L-sugars, and could thus be used to generate novel sorangiosides.  相似文献   

19.
The polyether ionophore monensin is biosynthesized by a polyketide synthase that delivers a mixture of monensins A and B by the incorporation of ethyl‐ or methyl‐malonyl‐CoA at its fifth module. Here we present the first computational model of the fifth acyltransferase domain (AT5mon) of this polyketide synthase, thus affording an investigation of the basis of the relaxed specificity in AT5mon, insights into the activation for the nucleophilic attack on the substrate, and prediction of the incorporation of synthetic malonic acid building blocks by this enzyme. Our predictions are supported by experimental studies, including the isolation of a predicted derivative of the monensin precursor premonensin. The incorporation of non‐native building blocks was found to alter the ratio of premonensins A and B. The bioactivity of the natural product derivatives was investigated and revealed binding to prenyl‐binding protein. We thus show the potential of engineered biosynthetic polyketides as a source of ligands for biological macromolecules.  相似文献   

20.
The antibiotic kirromycin is assembled by a hybrid modular polyketide synthases (PKSs)/nonribosomal peptide synthetases (NRPSs). Five of six PKSs of this complex assembly line do not have acyltransferase (AT) and have to recruit this activity from discrete AT enzymes. Here, we show that KirCI is a discrete AT which is involved in kirromycin production and displays a rarely found three‐domain architecture (AT1‐AT2‐ER). We demonstrate that the second AT domain, KirCI‐AT2, but not KirCI‐AT1, is the malonyl‐CoA‐specific AT which utilizes this precursor for loading the acyl carrier proteins (ACPs) of the trans‐AT PKS in vitro. In the kirromycin biosynthetic pathway, ACP5 is exclusively loaded with ethylmalonate by the enzyme KirCII and is not recognized as a substrate by KirCI. Interestingly, the excised KirCI‐AT2 can also transfer malonate to ACP5 and thus has a relaxed ACP‐specificity compared to the entire KirCI protein. The ability of KirCI‐AT2 to load different ACPs provides opportunities for AT engineering as a potential strategy for polyketide diversification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号