共查询到18条相似文献,搜索用时 62 毫秒
1.
针对传统的沥青路面人工检测效率低、缺乏客观性的弊端,提出基于语义分割的沥青路面裂缝智能识别方法.综合考虑数据集规模、算法种类、网络种类及深度、损失函数类型的影响,对22个语义分割模型开展对比研究,提出适用于较大、较小规模数据集的优选裂缝智能识别方案及对应模型.基于北京六环高速公路沥青路面,建立裂缝分割数据集R-Crack,对提出的智能识别方案进行应用检验,并自动量化裂缝参数.结果表明:检测准确率最高达到83.45%,通过对比人工及自动化检测方式获得的裂缝参数计算结果,裂缝长度和宽度平均误差分别为2.84%和2.39%,提出的智能识别方案为高速公路等场景下沥青路面裂缝的智能检测实践提供依据. 相似文献
2.
为实现高效、轻量化、无接触的桥梁裂缝病害识别,提出了一种基于桥梁裂缝识别模型(Bridge crack extraction model,BCEM)的桥梁裂缝识别网络。该网络将深度学习与传统图像处理方法相结合,首先,预处理裂缝图像,增强裂缝信息表达;之后,采用滑窗法将裂缝切分为面元图像,针对面元图像特性,采用改进的BC-MobileNet轻量化模型对裂缝面元进行分类;最后,识别误检与漏检面元,实现桥梁裂缝准确识别。通过与目标检测、模式识别等不同裂缝识别方式进行比较,结果表明:BCEM在各项实验指标上均有提升,证明了本文提出识别网络对桥梁裂缝识别的有效性。 相似文献
3.
大坝水下部分的裂缝检测是大坝维护维修的主要技术难点,采用水下机器人检测维修是未来发展的趋势。为解决水下机器人实现裂缝检测过程中的水下图像增强、语义分割、裂纹识别以及裂纹面积计算等问题,本文基于该工程需求提出了改进金字塔场景解析网络算法,并对该算法神经网络结构的超参数进行了优化。针对水下作业需求提出了激光辅助测量的面积计算方法,并进行了真实环境实验验证。实验数据表明:与其他算法相比所提出的网络结构优化了损失值、平均交并比。研究表明:优化后的语义分割算法能满足水下机器人作业对不同形态裂缝检测的实时性、精准性要求。 相似文献
4.
针对核电安全壳表面裂缝视觉检查任务面临的裂缝细小且占像素少、裂缝与背景对比度低、相似纹理干扰多、光照影响等问题,作者提出了一种细小裂缝分割模型TCS-Net(Segmentation network of tiny cracks)。该模型是编码——解码的网络结构,在下采样过程使用Soft Pooling减少编码过程池化导致的信息损失以保留图像边缘细节及位置信息;解码端在下采样过程中通过加入兼顾通道注意力和空间注意力的语义补偿模块(ResCRAM)以融合编码端的各层特征,可增强裂缝的多尺度细节信息;结合Bce(Binary Cross-Entropy)损失和Dice损失作为目标损失函数,以解决单一损失关注度倾向带来的训练不稳定的问题,也可优化Acc(Accuracy)、IOU(Intersection over Union)、Recall等性能指标。为了验证模型的有效性,在真实的安全壳图像对所提裂缝分割模型进行了测试。实验结果表明,与现有的主流语义分割模型相比,TCS-Net裂缝分割模型的IOU指标可提高5%-9%,Recall指标可提高9%-13%,由此说明该模型具有检测率和检测精度更高,能有效适用于目标与背景严重不平衡、背景复杂且干扰较多情况下的细小裂缝分割任务。 相似文献
5.
李想熊进刚 《南昌大学学报(工科版)》2021,43(1):43
针对当前土木工程混凝土结构裂缝识别效率低、精度不高的现状,基于深度学习理论,提出了一种基于单步多框检测(SSD)的裂缝识别方法。利用labelimg插件制作了2种具有代表性的裂缝数据集BCD和CCIC的数据标签。然后利用大量典型的裂缝图片进行识别训练,比较模型在不同样本类型和数量下训练效果的差异。并通过取样验证、损失值可视化和mAP精度评价等方法,证明该裂缝识别系统精度能达到95%以上并具有一定的普适性。因此,该系统可以应用到实际的裂缝识别任务中,为混凝土裂缝识别提供更高效的途径。 相似文献
6.
为了提升超声图像中的神经分割效果,提出了一种新的网络结构残差U型网络.相比于现有的U-net网络,残差U型网络加深了网络结构,提高了网络的表达能力;通过对每层参数进行规范化处理,减少了训练时间,提高了神经分割效果.实验结果表明,残差U型网络在分割效果比U-net网络提升了约13%,比SegNet网络提升了约7%. 相似文献
7.
传统的桥梁裂缝检测主要基于人眼识别,检测效率、精度低,而且人眼识别存在受光照影响大、桥塔、高墩等高空位置无法检测及主观性强的问题。近年来,国内外诸多学者为了解决上述问题,研发了许多基于数字图像技术的桥梁裂缝检测设备,像搭载高清相机的桥梁检测车、无人机、爬墩机器人等。同时,拥有高效、高精度的裂缝检测算法更是裂缝检测的基础,如何权衡检测速度与精度一直也是众多学者研究的热点问题之一。本文就近年来国内外基于数字图像技术的桥梁裂缝检测设备、相机的搭载平台与标定方法、预处理算法、传统检测算法、深度学习算法、裂缝特征计算、图像拼接算法以及裂缝的三维输出与监测等方面展开综合评述。此外,对研究过程中存在的不足进行了总结,并从桥梁裂缝检测方法、裂缝三维表达、裂缝的监测跟踪管理和桥梁刚度损失评价及预警等方面进行了展望。 相似文献
8.
基于多级特征并联的轻量级图像语义分割 总被引:1,自引:0,他引:1
针对当前语义分割算法普遍具有网络结构复杂和计算开销巨大的问题,为了综合提高语义分割算法实时性和精确度,提出计算高效的基于多级特征并联网络(LSSN)的轻量级图像语义分割网络. 该算法综合考虑网络的参数量、运行速度和性能,能更好地应用到嵌入式设备和可移动设备上. 应用微调的深度卷积神经分类网络作为特征提取网络结构,提取网络不同深浅层语义和位置特征. 提出空洞残差增强模块和深度空洞空间金字塔模块分别处理来自特征提取基准网络的深层特征和浅层特征,并将深浅层特征按特定维度比例以并联的方式进行融合. 所提方法在PASCAL VOC 2012数据集上准确度(平均交并比)为77.13%,与当前具有高性能的语义分割算法和实时语义分割算法相比,能更好地平衡网络的实时性和精确度,具有更优的实用价值和性能效果. 相似文献
9.
轮廓检测旨在提取图像中目标与背景环境的分界线,是计算机视觉研究领域中最基本的问题之一.深度学习技术作为直接从数据中学习特征表示的有效方法,近年来启发轮廓检测领域取得了显著的突破.鉴于此,本文就基于深度学习的轮廓检测研究领域的最新发展进行总结,具体包括:轮廓检测任务中采用的卷积神经网络结构,相关训练数据构造、特征压缩、上采样、代价函数和轮廓细化等关键问题,轮廓检测实验中采用的通用数据集和性能评价指标.最后,分析了基于深度学习的轮廓检测算法的挑战和未来研究趋势,以期为该领域的后续研究提供新思路及参考. 相似文献
10.
眼部疾病如糖尿病视网膜病变和糖尿病性黄斑病变,是导致全球失明的主要原因.眼科医生的视网膜图像评估是视网膜病理学鉴定的重要步骤.将深度学习应用到眼底视网膜血管分割中,对于诊断和监视眼部疾病,预防疾病的发展和保护视力,具有重要的研究意义和应用价值.针对视网膜分割的主要问题,对基于深度学习的视网膜血管分割方法展开了研究.以U... 相似文献
11.
为了提高分割算法在焊缝缺陷检测工程中的实用性,提出轻量级焊缝缺陷评估网络MYNet。其中,轻量级的残差结构降低了模型的计算量,多层视觉融合机制FPN(feature pyramid network)提高了网络的分割能力,并行蒙版机制可以得到快速和高质量的缺陷分割蒙版;引入开源跨平台计算机视觉库OpenCV,利用像素阈值计算不同缺陷面积;引入腾讯超高性能的移动平台推理框架,加快模型在中央处理器的前向推理速度。搭建以ARM Cortex-A72架构为控制核心的数字化人工智能(artificial intelligence)评估设备,部署适用于缺陷检测的轻量级64位Linux系统,验证了焊缝缺陷评估算法的可行性。实验结果表明:本文模型能够有效定位和学习不同类型的缺陷特征;网络评估缺陷面积和位置信息的准确率为94.64%;相比于准确度较高但计算量较大的MS R-CNN网络,所提方法的准确率仅下降1.93%,但网络的参数权重仅为MS R-CNN网络的1/14,网络执行所需计算力更低。在基于ARM(advanced RISC machine)架构的低成本硬件上,轻量级的残差结构使网络前向推理速度提... 相似文献
12.
介绍了某综合楼3层部分内的15根钢筋混凝土大梁的裂缝情况,结构检测及其原因分析,探索钢筋混凝土大梁严重开裂的原因,并提出处理方案。 相似文献
13.
针对与日俱增的隧道养护需求,为了节约时间与人力成本,提出基于卷积神经网络的公路隧道衬砌病害检测方法. 利用自主研制的隧道智能快速检测车采集24条隧道衬砌的图像,构建超过20 000张病害图像的高质量数据集. 结合隧道衬砌病害的成因及特点,分别构建单阶段SSD模型和两阶段R-FCN模型在自制的数据集上训练,对检测结果进行对比分析,提出离线式隧道衬砌病害检测方案. 试验结果表明,SSD模型的识别准确率为98%,总的平均精度均值(mAP)为72%,检测速度较快,适用于隧道的快速诊断. R-FCN模型的识别准确率为85%,总的mAP达到91%,检测精度较高,适用于隧道病害的后期处理. 利用这2种检测模型均可以提升检测效率和精度. 相似文献
14.
Current methods focusing on 3D model recognition and segmentation have to some extent ignored the relationship between the high-level global single-point features and the low-level local geometric features of those models, resulting in poor recognition results. A multi-feature fusion approach which takes into consideration the aforementioned ignored relationship is proposed. First, a global single-point network is established to extract the global single-point features with high-level semantic recognition ability by increasing both the width of convolution kernel and the depth of the network. Second, an attentional fusion layer is constructed to learn the implicit relationship between global single-point features and local geometric features to fully explore the fine-grained geometric features that can better represent model categories. Finally, the global single-point features and fine-grained geometric features are further fused to achieve the complementation of advantages and enhance the feature richness. Experimental verification is carried out on the 3D model recognition datasets ModelNet40, ModelNet10 and segmentation datasets ShapeNet Parts, S3DIS, vKITTI, respectively, and comparison with current mainstream recognition algorithms shows that the proposed algorithm not only has higher recognition and segmentation accuracy, but also has stronger robustness. 相似文献
15.
When the feature of stroke lesions is non-distinct,and the boundary between the lesions and the healthy brain tissue is difficult to distinguish,the segmentation model based on the self-attention mechanism is prone to generate a wrong attention coefficient map of the focus area,which affects the segmentation performance.To solve this problem,based on the global-attention-upsample attention U-Net (GAU-A-UNet),we propose a primary-auxiliary path attention compensation network (PAPAC-Net).The primary path network is responsible for accurate lesion segmentation and outputting the segmentation results while the auxiliary path network generates a tolerant auxiliary attention compensation coefficient to compensate for the primary path network’s potential attention coefficient map errors.Two compound loss functions are also proposed to realize the different functions for the primary and auxiliary path networks.Experimental results show that our GAU-A-UNet and PAPAC-Net both have a significant improvement in segmentation performance,which proves the effectiveness of our method. 相似文献
16.
YANG Luhui LIU Guangjie ZHAI Jiangtao LIU Weiwei BAI Huiwen DAI Yuewei 《西安电子科技大学学报(自然科学版)》2020,47(1):37-43
17.
针对卷积神经网络(CNN)模型的压缩和加速问题,提出基于滤波器裁剪的新型卷积神经网络模型加速算法. 通过计算卷积层中滤波器的标准差值衡量该滤波器的重要程度,裁剪对神经网络准确率影响较小的滤波器及对应的特征图,可以有效地降低计算成本. 与裁剪权重不同,该算法不会导致网络稀疏连接,不需要应用特殊的稀疏矩阵计算库. 基于CIFAR-10数据集的实验结果表明,该滤波器裁剪算法能够对VGG-16和ResNet-110模型加速30%以上,通过微调继承的预训练参数可以使结果接近或达到原始模型的精度. 相似文献
18.
网络入侵检测通过分析流量特征来区分正常和异常的网络行为以实现入侵流量的检测,是网络安全领域的重要研究课题.针对已有入侵检测模型特征提取过程复杂、信息提取不足等问题,提出了一种基于内外卷积网络的入侵检测模型.首先使用一维卷积神经网络提取流量数据的内部特征,然后通过对内部特征计算相似度建模得到无向同质图,此外将流量在外部网络侧的通信行为建模为有向异质图,并对两图使用图卷积网络学习包含网络流量多种交互行为的嵌入向量,最后将学习到的流量嵌入向量输入到分类器中用于最终的分类.实验结果表明,所提模型的检测准确率和误报率均优于对比模型. 相似文献